查看 最近的 文章
导出的德拉姆上同调在$p$-进几何中显得很重要,这是在特征$p$中Bhatt发现共轭滤过之后的结果,见[Bei12]中的德霍德完成结果。 在[Kal18]中,Kaledin引入了周期循环同源性的类似去完成,称为多项式周期循环同源性,它在特征$p$中带有共轭滤过,并期望与导出的德拉姆上同调相关。 在本文中,利用Hochschild同源性上的真实等变同伦结构,如[ABG+18,BHM22]中所示,我们给出了Kaledin的多项式周期循环同源性的等变描述。 这使得无需任何诺特假设即可得到莫里塔不变性,如[Kal18]中所示,而与导出的德拉姆上同调的比较变得清晰。 此外,这种描述可以直接适应到“拓扑”类比,从而产生拓扑周期循环同源性的德尼亚德完成,该完成可以扩展到截断布朗-彼得森谱上的线性范畴。 作为应用,我们建立了一个非交换的晶状体--德拉姆比较,该比较去完成了[PV19]中的结果,并将其扩展到素数$p=2$。 我们还将多项式周期循环同源性与特征$\mathbb F_p$上的拓扑霍奇同源性进行了比较,并从我们的描述中得出了特征p下的共轭滤过。
Derived de Rham cohomology turns out to be important in $p$-adic geometry, following Bhatt's discovery [Bha12] of conjugate filtration in char $p$, de-Hodge-completing results in [Bei12]. In [Kal18], Kaledin introduced an analogous de-completion of the periodic cyclic homology, called the polynomial periodic cyclic homology, equipped with a conjugate filtration in char $p$, and expected to be related to derived de Rham cohomology. In this article, using genuine equivariant homotopy structure on Hochschild homology as in [ABG+18, BHM22], we give an equivariant description of Kaledin's polynomial periodic cyclic homology. This leads to Morita invariance without any Noetherianness assumption as in [Kal18], and the comparison to derived de Rham cohomology becomes transparent. Moreover, this description adapts directly to "topological" analogues, which gives rise to a de-Nygaard-completion of the topological periodic cyclic homology, which admits an extension to linear categories over truncated Brown--Peterson spectra. As an application, we establish a noncommutative crystalline--de Rham comparison, which decompletes the result in [PV19], and extends it to prime $p=2$. We also compare polynomial periodic cyclic homology to topological Hochschild homology over $\mathbb F_p$, and produce a conjugate filtration in char p from our description.