查看 最近的 文章
美国国家海洋和大气管理局空间天气预报中心(SWPC)发布M级和X级太阳耀斑的官方美国政府预测,但这些预测的准确性从未被全面验证。 在本研究中,我们评估了SWPC在26年期间(1998-2024)的概率耀斑预测,并将其与几种零成本和统计基线进行比较,包括持续性、气候学、朴素贝叶斯和逻辑回归。 我们发现,SWPC模型在关键分类和概率指标上并未优于这些基线,并表现出严重的校准问题和高误报率,尤其是在高风险场景下,例如检测长时间平静期后的首次耀斑。 这些发现表明需要更准确和可靠的喷发预测模型,我们认为这些模型应基于现代数据驱动的方法。 这些发现还提供了一个标准,任何提出的喷发预测系统都应与此标准进行比较。 我们建议空间天气预报员定期更新并发布类似此处展示的分析,以提供最新的准确性和可靠性标准,用于比较新方法。
The NOAA Space Weather Prediction Center (SWPC) issues the official U.S. government forecast for M-class and X-class solar flares, yet the skill of these forecasts has never been comprehensively verified. In this study, we evaluate the SWPC probabilistic flare forecasts over a 26-year period (1998-2024), comparing them to several zero-cost and statistical baselines including persistence, climatology, Naive Bayes, and logistic regression. We find that the SWPC model does not outperform these baselines across key classification and probabilistic metrics and exhibits severe calibration issues and high false alarm rates, especially in high-stakes scenarios such as detecting the first flare after extended quiet periods. These findings demonstrate the need for more accurate and reliable eruption forecasting models which we suggest should be based on modern data-driven methods. The findings also provide a standard against which any proposed eruption prediction system should be compared. We suggest that space weather forecasters regularly update and publish analyses like the one demonstrated here to provide up-to-date standards of accuracy and reliability against which to compare new methods.
太空辐射对长期载人航天任务构成重大挑战,其来源包括银河宇宙射线、太阳粒子事件以及范艾伦带中的 trapped 粒子。 这些高能辐射会对宇航员造成严重的生物效应,并退化航天器系统,因此有效的屏蔽至关重要。 传统上使用如铝等被动屏蔽材料,但它们的局限性,尤其是在产生次级辐射方面,需要更好的替代方案。 在本研究中,使用 NASA 开发的工具 OLTARIS,在 GCR 和 SPE 环境中评估了锂氢化物、聚乙烯、锂硼氢化物、铍硼氢化物和氨硼烷等屏蔽材料的性能。 1989 年 10 月的 SPE 被用于研究粒子通量和剂量分布。 屏蔽效果因环境而异。 在 SPE 中,铍硼氢化物表现最好,而在 GCR 中,锂氢化物给出最低的剂量。 在 SPE 中,性能与氢含量有关。 还研究了太阳调制对 GCR 剂量的影响。 较高的调制会降低 GCR 强度和剂量。 高能空间辐射和材料组合的复杂性带来了计算挑战。 为了解决这个问题,将材料选择问题建模为无约束二次二进制优化问题,并使用变分量子本征求解器和量子近似优化算法进行求解。 将 OLTARIS 数据映射到伊辛模型,并应用这些量子经典方法有助于确定最小化辐射剂量的屏蔽设置。 结果表明,OLTARIS 和量子优化在两种环境中均取得一致的结果。
Space radiation poses a significant challenge for long duration human space missions, with sources including Galactic Cosmic Rays, Solar Particle Events, and trapped particles in the Van Allen belts. These high-energy radiations cause severe biological effects on astronauts and degrade spacecraft systems, making effective shielding critical. Traditionally, passive shielding materials like aluminum have been used, but their limitations, particularly in generating secondary radiation, necessitate better alternatives. In this study, the performance of shielding materials such as lithium hydride, polyethylene, lithium borohydride, beryllium borohydride, and ammonia borane are evaluated in GCR and SPE environments using OLTARIS, a NASA developed tool. The October 1989 SPE is used to study particle flux and dose distributions. Shielding effectiveness varies by environment. Beryllium borohydride performs best in SPE, while lithium hydride gives the lowest dose in GCR. In SPE, performance is linked to hydrogen content. Effect of Solar modulation on GCR dose is also studied. Higher modulation lowers GCR intensity and dose. The complex nature of high energy space radiation and material combinations creates computational challenges. To address this, the material selection problem is modeled as a Quadratic Unconstrained Binary Optimization and solved using the Variational Quantum Eigensolver and Quantum Approximate Optimization Algorithm. Mapping OLTARIS data to the Ising model and applying these quantum classical methods helped identify shielding setups that minimize radiation dose. Results show agreement between OLTARIS and quantum optimization for both environments.
基于空间的CUbesat太阳偏振计(CUSP)任务旨在通过康普顿散射偏振计测量硬X射线波段太阳耀斑的线偏振。 CUSP是意大利航天局阿尔库尔计划框架内的一个项目,旨在开发新的立方星任务。 作为CUSP阶段B研究的一部分,该研究于2024年12月开始,将持续一年,我们介绍了为满足任务最关键多物理设计驱动因素而采用的设计解决方案的当前发展状况。 这些解决方案已被制定并应用,以证明在航天器和平台层面符合系统要求。 特别是,我们描述了每个结构部件的机械设计,静态、动态有限元分析的结果,以及平台与有效载荷之间接口和一些测试夹具的拓扑优化方案,并将对机械演示器进行初步环境测试活动(例如振动、冲击)。
The space-based CUbesat Solar Polarimeter (CUSP) mission aims to measure the linear polarization of solar flares in the hard X-ray band by means of a Compton scattering polarimeter. CUSP is a project in the framework of the Alcor Program of the Italian Space Agency aimed at developing new CubeSat missions. As part of CUSP's Phase B study, which began in December 2024 and will last one year, we present the current development status of the design solutions adopted for the mission's most critical multi-physics design drivers. These solutions have been formulated and applied to demonstrate compliance with system requirements at both the spacecraft and platform levels. In particular, we describe the mechanical design of each structural component, the results of static, dynamic finite element analyses, and a proposal for topological optimization of the interface between the platform and payload and some fixture for test, and the preliminary environmental testing campaign (e.g., vibration, shock) that will be carried out on a mechanical demonstrator.
研究流相互作用区域(SIRs)的形成及其发展动力学,可以提供关于太阳-地球联系的见解。 一些位于太阳轨道器(SolO)太空任务上的原位仪器被设计用于测量飞行路径上的太阳风(SW)和行星际磁场参数。 这些仪器非常适合在日心距离为0.28-1.0 AU以及在日纬度变化为$0^\circ$- $33^\circ$的情况下研究SIR演变的动力学。 为了解决及时识别SIRs并预测其到达地球时间的挑战,我们考虑使用来自射电和等离子体波(RPW)/SolO仪器的触发事件,这些事件通过遥测数据包传输。 我们认为,在最多四小时的时间间隔内,RPW仪器中触发模式(SBM1模式)的多次激活可能反映了太阳风中大规模事件的精细结构。 此类事件可以作为航天器位于SIR中的位置的标记。 在这方面,2023年的分析显示,全天SBM1触发模式的多次激活占到了记录此类事件的总天数的50$\%$以上。 其中,63$\%$是触发算法在最多四小时的时间间隔内被反复触发的事件。 将SBM1触发事件的记录时间与从SWA-PAS和MAG仪器获得的SW参数进行比较显示,当高速SW流和形成的压缩区域存在时,触发算法的重复激活发生在流界面表面上。
Studying stream interaction regions (SIRs), from their inception and the dynamics of their development, can provide insight into solar-terrestrial connections. Some in-situ instruments on the Solar Orbiter (SolO) space mission are designed to measure solar wind (SW) and interplanetary magnetic field parameters along the flight path. These instruments are ideal for studying the dynamics of SIR evolution at heliocentric distances of 0.28-1.0 AU and with changes in heliolatitude of $0^\circ$- $33^\circ$. To address the challenges of promptly identifying SIRs and predicting their arrival time on Earth, we consider using trigger events from the Radio and Plasma Wave (RPW)/SolO instrument, which are transmitted in telemetry data packages. We suggest that multiple activations of the trigger mode (SBM1 mode) in the RPW instrument over an interval of up to four hours may reflect the fine structure of large-scale events in SW. Such events can serve as markers for the spacecraft's location within the SIR. In this regard, the 2023 analysis revealed that multiple activations of the SBM1 trigger mode throughout the day accounted for more than 50$\%$ of the total number of days for which such events were recorded. Of this number, 63$\%$ were events when the trigger algorithm was prompted repeatedly within a time interval of up to four hours. A comparison of the registration times of SBM1 trigger events with the SW parameters obtained from the SWA-PAS and MAG instruments showed that repeated activations of the trigger algorithm occurred at the stream interface surface when a high-speed SW stream and a formed compression region were present.