Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > stat > arXiv:1512.05153

帮助 | 高级搜索

统计学 > 计算

arXiv:1512.05153 (stat)
[提交于 2015年12月16日 ]

标题: 一种具有协方差估计的多元组套索算法

标题: An algorithm for the multivariate group lasso with covariance estimation

Authors:Ines Wilms, Christophe Croux
摘要: 我们研究了一个用于考虑相关误差项的多元线性回归模型的组套索估计量。 使用块坐标下降算法来计算这个估计量。 我们进行了一个具有分类数据和多元时间序列数据的模拟研究,这些是预测变量之间存在自然分组的典型设置。 我们的模拟研究显示了所提出的组套索估计量相对于其他估计量的良好性能。 我们在一个基因表达的时间序列数据集上展示了该方法。
摘要: We study a group lasso estimator for the multivariate linear regression model that accounts for correlated error terms. A block coordinate descent algorithm is used to compute this estimator. We perform a simulation study with categorical data and multivariate time series data, typical settings with a natural grouping among the predictor variables. Our simulation studies show the good performance of the proposed group lasso estimator compared to alternative estimators. We illustrate the method on a time series data set of gene expressions.
主题: 计算 (stat.CO) ; 方法论 (stat.ME)
引用方式: arXiv:1512.05153 [stat.CO]
  (或者 arXiv:1512.05153v1 [stat.CO] 对于此版本)
  https://doi.org/10.48550/arXiv.1512.05153
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Ines Wilms [查看电子邮件]
[v1] 星期三, 2015 年 12 月 16 日 12:50:30 UTC (117 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • TeX 源代码
  • 其他格式
查看许可
当前浏览上下文:
stat.CO
< 上一篇   |   下一篇 >
新的 | 最近的 | 2015-12
切换浏览方式为:
stat
stat.ME

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号