物理学 > 流体动力学
[提交于 2024年11月30日
]
标题: 算子学习正则化在双尺度流动问题中的宏观渗透率预测
标题: Operator learning regularization for macroscopic permeability prediction in dual-scale flow problem
摘要: 液态复合材料模塑是一种重要的纤维增强复合材料制造技术,因其成本效益高而备受关注。然而,由于对纺织品织物关键特性(如渗透率)缺乏理解,该工艺的优化面临挑战。 计算渗透系数的问题可以建模为著名的Stokes-Brinkman方程,该方程引入了一个异质参数$\beta$来区分大孔区域和纤维束区域。 在目前的工作中,我们训练了一个傅里叶神经算子来学习从异质系数$\beta$到速度场$u$的非线性映射,并恢复相应的宏观渗透率$K$。这是一个具有挑战性的反问题,因为输入和输出场的量级相差几个数量级,因此我们为损失函数引入了不同的正则化技术,并对它们进行了定量比较。
当前浏览上下文:
physics.flu-dyn
文献和引用工具
与本文相关的代码,数据和媒体
alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)
演示
推荐器和搜索工具
arXivLabs:与社区合作伙伴的实验项目
arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。
与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。
有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.