广义相对论与量子宇宙学
[提交于 2024年12月2日
(v1)
,最后修订 2024年12月4日 (此版本, v2)]
标题: 弯曲时空中的自适应时间步长显式辛积分器
标题: Explicit symplectic integrators with adaptive time steps in curved spacetimes
摘要: Recently, our group developed explicit symplectic methods for curved spacetimes that are not split into several explicitly integrable parts, but are via appropriate time transformations. Such time-transformed explicit symplectic integrators should have employed adaptive time steps in principle, but they are often difficult in practical implementations. In fact, they work well if time transformation functions cause the time-transformed Hamiltonians to have the desired splits and approach 1 or constants for sufficiently large distances. However, they do not satisfy the requirement of step-size selections in this case. Based on the step-size control technique proposed by Preto $\&$ Saha, the nonadaptive time step time-transformed explicit symplectic methods are slightly adjusted as adaptive ones. The adaptive methods have only two additional steps and a negligible increase in computational cost as compared with the nonadaptive ones. Their implementation is simple. Several dynamical simulations of particles and photons near black holes have demonstrated that the adaptive methods typically improve the efficiency of the nonadaptive methods. Because of the desirable property, the new adaptive methods are applied to investigate the chaotic dynamics of particles and photons outside the horizon in a Schwarzschild-Melvin spacetime. The new methods are widely applicable to all curved spacetimes corresponding to Hamiltonians or time-transformed Hamiltonians with the expected splits. Also application to the backwards ray-tracing method for studying the motion of photons and shadows of black holes is possible.
文献和引用工具
与本文相关的代码,数据和媒体
alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)
演示
推荐器和搜索工具
arXivLabs:与社区合作伙伴的实验项目
arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。
与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。
有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.