数学 > 偏微分方程分析
[提交于 2025年8月5日
]
标题: 有限时间爆破对于无限维涡度方程
标题: Finite-time blowup for the infinite dimensional vorticity equation
摘要: In a previous work with Tai-Peng Tsai, the author studied the dynamics of axisymmetric, swirl-free Euler equation in four and higher dimensions. One conclusion of this analysis is that the dynamics become dramatically more singular as the dimension increases. In particular, the barriers to finite-time blowup for smooth solutions which exist in three dimensions do not exist in higher dimensions $d\geq 4$. Motivated by this result, we will consider a model equation that is obtained by taking the formal limit of the scalar vorticity evolution equation as $d\to +\infty$. This model exhibits finite-time blowup of a Burgers shock type. The blowup result for the infinite dimensional model equation strongly suggests a mechanism for the finite-time blowup of smooth solutions of the Euler equation in sufficiently high dimensions. It is also possible to treat the full Euler equation as a perturbation of the infinite dimensional model equation, although this perturbation is highly singular.
文献和引用工具
与本文相关的代码,数据和媒体
alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)
演示
推荐器和搜索工具
arXivLabs:与社区合作伙伴的实验项目
arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。
与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。
有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.