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Abstract

扩散模型通常注入各向同性高斯噪声，忽视数据中的结构。受海森堡不确
定性原理下量子挤压态重新分配不确定性的启发，我们引入了挤压扩散模
型（SDM），其沿训练分布的主要成分以各向异性方式缩放噪声。挤压在物
理学中增强了信噪比，因此我们认为以数据依赖的方式缩放噪声可以更好
地帮助扩散模型学习重要的数据特征。我们研究了两种配置：(i) 一种海森
伯格扩散模型，它通过在正交方向上进行逆缩放来补偿主轴上的缩放，并且
(ii)一种仅缩放主轴的标准 SDM变体。出人意料的是，在 CIFAR-10/100和
CelebA-64上，温和的抗挤压-即增加主轴上的方差 -一致地将 FID提高了高
达 15%，并将精确度–召回率前沿移向更高的召回率。我们的结果表明，简单
的、数据感知的噪声整形可以在不改变架构的情况下提供稳健的生成收益。

1 介绍

基于分数的扩散模型已成为高质量图像生成的标准工具，在从 CIFAR-10 到 ImageNet[1, 2]
的数据集上达到了最先进的性能。虽然扩散模型通常依赖于在训练过程中添加标准各向同性
高斯噪声，但有证据表明这种“一刀切”的方法可能会在某些情况下（如自然图像，其在频
域中具有各向异性功率分布）降降低生成质量 [3]。这促使人们研究以数据相关的方式对扩
散过程中的噪声进行工程化处理的方法，以克服这些缺点 [4, 5]。

量子计量学领域 [6]已经发展出了一系列技术，用于在精密测量的背景下操纵噪声。其中一
种技术是量子压缩 [7]，它重新分配了噪声，使得沿着“测量”轴的方差减小，从而提高信噪
比 (SNR)并实现弱信号提取。受此启发，我们引入了挤压扩散模型（SDM），该模型沿数据
集的主要成分各向异性地缩放噪声。我们认为这鼓励了模型在训练过程中学习更具语义意义
的模式，从而提高了生成样本的质量。

为了测试这一点，我们研究了两种模型变体：(1)一个海森伯格扩散模型，它放大主方向并
缩小正交方向；(2)只放大主方向的“标准”SDM。令人惊讶的是，我们在多个数据集上观
察到沿主轴轻微抗挤压的最佳性能——即注入噪声和降低信噪比。

背景 量子挤压利用海森堡不确定性原理：

∆A ·∆B ≥ 1

2
|〈[A,B]〉| (1)
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图 1: 扩散与挤压噪声。(a)原始数据分布。(b)标准各向同性加噪过程。(c) – (d)沿主方向进行 (c)挤
压和 (d)反挤压的各向异性加噪过程。

通过减少一个物理变量∆A的方差同时增加其共轭变量∆B的方差，但保持乘积不变。挤压
状态提高了沿选定轴的信噪比，并支持诸如引力波 [8]和暗物质 [9]检测器等精密测量。

Figure 1说明了这一效果如何应用于扩散模型。在 fig. 1(c)中，噪声（红色）沿第一主成分被
压缩，由于相对较高的信噪比，原始分布（蓝色）仍然保持相当完整，相对于各向同性噪声
（fig. 1(b)）。在 fig. 1(d)中，噪声反而变为反挤压或沿相同方向增强，与各向同性情况相比降
低了信噪比。

相关工作 近期的研究表明，替代的噪声调度可以影响生成性能 [10]。例如使用余弦调度 [2]
和变分优化调度 [11] 已经证明了改进。其他工作则专注于通过例如等化或偏置某些频率的
方式改变频域中的噪声结构 [3, 4, 12]。更接近我们的目标，其他研究已经表明学习一个多变
量数据相关的噪声过程 [5]可以带来好处。我们的方法不同之处在于使用一种简单的、受物
理学启发的 PCA对齐来应用单参数各向异性缩放。

2 方法: 压缩扩散

如标准的 DDPM一样，SDM会在一个时间表 {βt}Tt=1 ⊂ (0, 1)上通过加性高斯噪声来破坏一
个干净的数据点 x0。然而，在 SDM中，每一步我们都会用一个强度由单一超参数控制的挤
压矩阵 St(s)对噪声进行各向异性地缩放，该超参数可能是 s，也可能随 t变化：

xsq
t =

√
αt x

sq
t−1 +

√
1− αt St(s) εt, εt

i.i.d.∼ N (0, I), αt = 1− βt. (2)

边缘分布 通过展开 eq. (2)，我们得到

xsq
t =

√
ᾱt x0 +

t∑
i=1

(√
1− αi

t∏
j=i+1

√
αj

)
Si(s) εi, ᾱt =

t∏
i=1

αi, (3)

它仍然是具有均值
√
ᾱt x0 和协方差 Σt =

∑t
i=1

(
(1− αi)

∏t
j=i+1 αj

)
SiS

>
i .的高斯分布。

训练目标 网络被训练来预测压缩噪声 εsq
t = St(s)εt通过标准均方误差：

LSDM = Ex0,t,εt

∥∥εsq
t − ε̂sq

θ (x
sq
t , t)

∥∥ 2

2
. (4)

反向步骤（白化-去噪-再挤压） 对于反向步骤，我们首先漂白每个状态：

x̃t = S−1
t xsq

t , ε̃θ = S−1
t ε̂sq

θ . (5)

通过这个变量变换，eq. (2)变为大约等于一个标准的 DDPM在 x̃t 中，这使我们能够重用后
验概率 Ho et al. [1]：

x̃t−1 =
1

√
αt

(
x̃t −

1− αt√
1− ᾱt

ε̃θ(x̃t, t)
)
+

√
β̃t z, z ∼ N (0, I), (6)

其中 β̃t = (1− ᾱt−1)/(1− ᾱt)βt。最后我们使用重新挤压和矩阵下一个将 St−1 保持在压缩
坐标中：

xsq
t−1 = St−1(s) x̃t−1. (7)2



请注意，通过白化处理，eq. (2)变为

x̃t =
√
αtS

−1
t St−1x̃t−1 +

√
1− αtεt (8)

当 St不随时间变化时，方程 eq. (8)是一个精确的 DDPM，因为 St = St−1和 eq. (6)是精确的
后验分布。对于时间依赖的挤压，这只是近似的 DDPM，并且具有一些漂移 Rt = S−1

t St−1。
然而，对于我们定义的挤压矩阵形式和线性噪声调度，这种漂移最终变得可以忽略不计，因
此后验估计不会影响生成性能。更多细节请参见 section B。

压缩矩阵 St(s) 为了选择挤压的方向，我们在单个像素级别对 RGB空间中的数据进行 PCA
分解。对于大型自然图像集，这与对立色轴亮度、红-绿和蓝-黄对齐 [13, 14]。令 v̂为第一主
成分方向上的单位向量，在 RGB图像中即为亮度。我们可以定义海森伯扩散模型的压缩矩
阵 SHDM

t 和标准压缩扩散模型的压缩矩阵 SSDM
t ：

SHDM
t (s) = e−s v̂v̂> + e

s
n−1

(
I − v̂v̂>

)
, SSDM

t (s) = I + v̂v̂>
(
e−s − 1

)
. (9)

这里 s是对应于压缩强度的超参数，而 n是进行压缩操作的向量空间的维度。对于 RGB像
素的情况，n = 3。注意，SSDM

t 是通过仅仅丢弃在与 v̂v̂>正交的子空间中的反挤压从 SHDM
t

导出的。这些矩阵反映了量子力学中电磁挤压算子的指数形式 [15]:

S(z) = exp
(
z∗â2 + z(â†)2

2

)
(10)

对于 z = reiθ, S(z)在由电磁创造和湮灭算子 â†, â决定的相空间中的 θ 方向将噪声缩放了
e−r 倍，正如 St 在由 v̂确定的方向上通过 e−s进行的那样。

最后，为了使挤压过程更好地与扩散模型的噪声时间表对齐，在我们的实验中该时间表是线
性的，我们将挤压强度 s作为时间 s(t) = s0

βt

βmax
的线性函数变化，这使得挤压矩阵 St成为

时间依赖的。

3 结果

我们的实验包括消融研究，以评估在各种标准图像数据集上的压缩扩散。结果如 fig. 2所示。
在 CIFAR-10数据集 [16]上，FID-10K显示出与压缩强度（fig. 2a）一致的 U型依赖关系，跨
多个随机种子。基线 DDPM的平均 FID为 39.8，而 SDM达到了 s ≈ −0.4的 FID 33.6 -改善
了 ∼15%。值得注意的是，在抗挤压条件下信噪比下降。

接下来，使用固定的种子，我们将标准压缩扩散模型与保持不确定性的海森堡变体在 CIFAR-
10上进行比较。FID-10K（fig. 2b）和 Inception Score（fig. 2c）在 s中都遵循相同的 U形趋势，
最优值分别接近 s ≈ −0.4（FID）和 s ≈ −0.3（IS）。SDM在轻微的反压缩区域优于 HDM。

为了检查压缩的鲁棒性，我们在 CIFAR-100[16]上评估了 SDM生成性能 fig. 2d，在 CelebA-
64[17]上评估了 fig. 2e。抛物线形状在数据集之间得到了重现，最佳效果再次出现在温和的
反压缩区域。最优位置的确切位置因数据集而异，CIFAR-100 的最佳性能位于 s ∼ −0.3，
CelebA-64的最佳性能位于 s ∼ −0.2。

为了进一步了解压缩与反压缩的影响，我们分析了模型在 CIFAR-10 [18–20]上的精度和召回
率指标。Figure 2f表明压缩 SDM噪声对应于减少召回率，而精确度略有提升。相比之下，反
压缩噪声会产生较大的召回率增益，同时在一定程度上以轻微的精确度损失为代价。总体生
成质量，通过 F-score衡量，再次表现出抛物线行为，直到某个点为止。

定性样本 在图中。3我们比较了用相同噪声种子生成的基线 DDPM和 SDM的 36个样本
在最优反挤压情况下的表现 s = −0.4。SDM图像显示物体轮廓更加清晰：第 1行第 3列变
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(a) SDM FID与 s在 CIFAR-10上
的比较

(b) SDM与 HDM的 FID CIFAR-
10比较

(c) SDM与 HDM在 CIFAR-10上
的比较

(d) SDM FID 与 s在 CIFAR-100
上的对比

(e) SDM FID与 s在 CelebA-64上
的比较 (f) SDM P-R在 CIFAR-10上

图 2: 结果概述跨数据集和指标。(a) – (c) SDM与 HDM在 CIFAR-10上的 FID和 IS比较；(d) – (e)
CIFAR-100和 CelebA-64上的跨数据集 FID消融研究；(f)在 CIFAR-10上的精确率 –召回率分析，点
和 F 分数恒定的轮廓上标注了挤压强度。

(a) s = 0.0（基线） (b) s = −0.4（最优反挤压）

图 3:生成的CIFAR-10样本用于标准DDPM和具有固定种子的 SDM。（a）标准DDPM；（b）在 s = −0.4

处的反挤压 SDM。

成了一辆清晰的小车而不是灰色模糊，而第 2行第 6列则显示出更锐利的船边缘和云朵。这
些更锐利的纹理与在 ∼中看到的 15% FID下降 s = −0.4在 2a中一致。偶尔仍然存在高频
振铃伪影（例如，第 2行第 3列的小车），这反映了在 PR分析中随着反挤压增加所看到的精
度损失。
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4 结论与未来工作

在三个图像数据集中，我们观察到样本质量对挤压强度的稳定U形依赖关系：适度的反挤压
会增大亮度方向上的方差，提高召回率而几乎不牺牲精度，而强烈的挤压或反挤压都会损害
两者。标准 SDM变体与海森堡对应物相匹配或优于后者，这表明扩散模型不必严格保持不
确定性就能提升生成性能。未来的工作可以包括扩展到更高分辨率的数据集，并探索频率依
赖性或特定模态的挤压，例如音频。总体而言，SDM提供了一种操纵噪声的原则方法，能够
显著提高生成质量。
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A 模型训练的细节

A.1 实现

我们使用带有 UNet2D模型主干的 HuggingFace扩散模型库 [21]。为了应用挤压操作，我们
保持 UNet 架构不变，并子类化 DDPMScheduler 类，覆盖添加噪声和步骤方法。所有其他
训练和采样代码保持标准。该模型使用线性噪声时间表。训练使用了 1000个时间步长，而
采样则使用 50个。我们还使用了 EMA，并将 EMA衰减值设置为 0.9999。所有实验均在一
个 NVIDIA A100（40GB）GPU上通过加速以混合精度（fp16）运行。这些实验的代码可在
https://github.com/joe-singh/squeezing处获得。

B 正向和反向过程的细节

B.1 前向过程

证明. 我们通过归纳法证明 eq. (3)。该命题对于 x1是真的，由 eq. (2)给出。现在假设它对 xt

为真。那么：

xt+1 =
√
αt+1xt +

√
1− αt+1St+1εt+1

=
√
αt+1

√αt . . . α1x0 +

t∑
i=1

Siεi
√
1− αi

t∏
j=i+1

√
αj

+
√
1− αt+1St+1εt+1

=
√
αt+1αt . . . α1x0 +

t∑
i=1

Siεi
√
1− αi

t+1∏
j=i+1

√
αj +

√
1− αt+1St+1εt+1

=
√
ᾱt+1x0 +

t+1∑
i=1

Siεi
√
1− αi

t+1∏
j=i+1

√
αj

B.2 后验近似的有效性

在文中我们注意到，对于时间依赖的压缩，Ho等人。后验是一种近似。为了说明这一点，我们
计算标准 SDM情况下漂移因子 S−1

t St−1。首先使用 Sherman-Morrison公式计算 SSDM
t 的逆：

S−1
t = I + vv>

(
es(t) − 1

)
(11)

在我们的工作中，s(t)遵循由 s(t) = s0
βt

βmax
给出的线性计划。使用此线性计划计算 S−1

t St−1

得到

S−1
t St−1 = I + vv>

(
exp

[
s0∆β

βmax

]
− 1

)
(12)

在哪里 ∆β = βt − βt−1。默认线性计划扩散器从 β = 1× 10−4 开始并在 β = 0.02结束。使
用 1000个时间步（训练）时，∆β ∼ 2× 10−5而在 50个时间步（推理）时，∆β ∼ 4× 10−4。
两个数字都足够小，因此对于较小的挤压强度 |s0|，指数接近于 1，所以漂移项大约是恒等
变换，并且方程 eq. (6)中的后验近似成立。
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