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Abstract

利用大规模数据和预训练语言模型，视频大型语言模型
（Video-LLMs）在回答视频问题方面表现出了强大的能
力。然而，大多数现有的研究集中在提高性能上，对理
解其内部机制的注意力有限。本文旨在通过系统性实证
研究来弥补这一差距。为了解释现有的 VideoLLMs，我
们采用注意力敲除作为主要分析工具，并设计了三种变
体：视频时间敲除、视频空间敲除和语言到视频敲除。然
后，我们在不同数量的层（窗口）上应用这三种敲除方
法。通过仔细控制层窗口类型和类型的敲除方式，我们
提供了两种设置：全局设置和细粒度设置。我们的研究
揭示了三个关键发现：(1) 全局设置表明视频信息提取
主要发生在早期层中，形成一个清晰的两阶段过程——
较低层关注感知编码，而较高层处理抽象推理；(2) 在细
粒度设置下，某些中间层对视频问题回答的影响尤为巨
大，作为关键异常值发挥作用，而大多数其他层贡献较
小；(3) 在这两种设置中，我们观察到时空建模更多依赖
于语言引导的检索而非视频令牌之间的帧内和帧间自注
意力，尽管后者计算成本较高。最后，我们展示了这些
见解可以用来减少 Video-LLMs中的注意力计算。据我
们所知，这是首次系统地揭示 Video-LLMs如何内部处
理和理解视频内容的工作，为未来的研究提供了可解释
性和效率视角。

介绍
视频大型语言模型（视频-LLMs）最近展示了它们强
大的理解视频内容和回答各种类型问题的能力 (Zhang
et al. 2024c,d; Yao et al. 2024; Bai et al. 2025; Chen
et al. 2024b; Cheng et al. 2024)。最近关于视频-大语言
模型的研究主要集中在提高模型性能上，例如，提升视
频指令数据集的质量和规模 (Zhang et al. 2024d; Yao
et al. 2024; Bai et al. 2025; Chen et al. 2024b; Cheng
et al. 2024)，延长输入帧长度 (Zhang et al. 2024a; Xue
et al. 2024; Liu et al. 2024b)，以及优化视频标记的位置
编码 (Liu et al. 2025; Ge et al. 2024; Wei et al. 2025)。

然而，对于它们内部机制的理解仍然有限——特别是它
们如何处理和推理视频内容。深入了解这些机制对于
增强解释性、提高模型效率和促进未来模型发展至关
重要。

在图像领域，许多研究人员试图提高这些大型多
模态模型的可解释性以避免纯粹的黑盒使用。这些
工作研究了 MLLMs 的内部状态如何与其外部行为
对应 (Zhang et al. 2025; Kaduri, Bagon, and Dekel
2024; Basu et al. 2024; Zhao et al. 2024; Zhang et al.
2024b)。这包括从图像到不同阶段模式形成的信源流
分析 (Zhang et al. 2025; Chen et al. 2024a; Lin et al.
2025)、逻辑分布中不希望的内容生成模式 (Zhao et al.
2024)、两阶段模式和安全机制精细化 (Xu et al. 2024)、
与对象相关视觉线索的基础和演变 (Neo et al. 2024;
Schwettmann et al. 2023; Ma et al. 2024)、信息在模型
参数中的存储 (Basu et al. 2024)，以及冗余视觉标记的
减少 (Zhang et al. 2024b)。相比图像领域MLLMs可解
释性的丰富研究，在高维视频领域仍很大程度未被探
索。最近的一项工作 (Xiao et al. 2025)进行了全面的实
验来分析各种视频-大语言模型的行为，并报告了几项
有趣的观察结果：这些模型在视频问答方面表现出色，
但在时间定位上表现不佳；它们对语言变化非常敏感，
而对视频扰动则不太敏感。虽然这项工作主要侧重于分
析模型的外部行为，但其内部透明度仍然很大程度上未
被探索。

我们的工作朝着揭示现有视频大语言模型内部模
式的方向迈进，并理解这些模式如何与其在视频问答中
的出色表现相关联。现代视频大语言模型 (Zhang et al.
2024a; Wang et al. 2025; Li et al. 2024a; Zhang et al.
2024c)通常遵循类似的架构：预训练的视觉编码器将视
频转换为标记，投影层将这些标记映射到语言空间中，
以及一个大型语言模型（LLM），该模型接收视频和语
言标记以生成响应。每个视频标记由 LLM中的每一层
进行处理，并通过注意力机制与其他视频标记和问题标
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图 1: 典型的 Video-LLMs架构设计。

记相互作用。这有助于信息在各层之间的提取和传播，
最终对最终答案有所贡献。在每一层内部，注意力机制
可以分解为三种类型：时间注意力（跨视频帧），空间
注意力（每个帧内）和语言到视频的注意力。我们设计
了三种对应的关注点敲除方法，选择性地禁用一种特定
类型的注意力，使我们能够分析其单独的影响。为了获
得不同粒度级别的见解，我们在两种设置下研究了视频
大语言模型的内部模式：全局设置和细粒度设置，通过
仔细控制敲除层范围和注意力类型来实现。在全局设置
中，我们探讨两个问题：（1）视频 LLM是否表现出与
图像级 VLM类似的两阶段行为——即早期层的感知编
码和后期层的语义推理——还是遵循一个不同的范式？
（2）在全球范围内，每种注意力类型如何贡献于视频问
答性能？在细粒度设置中，我们探索：（3）每种注意力
类型如何影响不同层的视频问答（VideoQA）？

我们分析了一系列具有代表性的视频-大语言
模型，包括 LongVA(Zhang et al. 2024a)、Intern-
Video2.5(Wang et al. 2025)、LLaVA-OneVision(Li et al.
2024a)和 LLaVA-Video(Zhang et al. 2024c)，在主流的
视频问答基准测试上进行评估，这些基准测试涵盖了
多种任务类型和视频长度。这包括短时多任务视频问
答：MVBench(Li et al. 2024b)、中时自我中心视角视
频问答：EgoSchema(Mangalam, Akshulakov, and Ma-
lik 2023)以及长时开放领域视频问答：Video-MME(Fu
et al. 2024)。通过包含超过 300个数据点的广泛实验，
我们总结了关键发现：(1) 全局设置下的观察：从一定
比例的层（例如，整个模型的 60%）开始应用语言到视
频注意力剔除，并未显示出对各种基准和模型性能有显
著影响。(2) 全局设置下的观察：应用完全的语言到视
频注意力剔除导致了明显的性能下降，这种下降幅度远

大于时间或空间剔除所造成的，如 fig. 5所示。(3) 细
粒度设置下的观察：对于大多数单独的层而言，语言到
视频注意力剔除的影响强于时间或空间注意力剔除，如
fig. 6所示。(4) 细粒度设置下的观察：剔除特定层（例
如，第 12至 16层）导致了显著的性能下降，而大多数
其他层则影响甚微，如 fig. 6所示。
这些结果揭示了关于 VideoQA的以下见解：(a)视

频大语言模型表现出明显的两阶段处理模式，其中早期
层主要关注提取视频信息。(b)当前的视频大语言模型
严重依赖于语言到视频的关注机制来检索和建模视频
内容，而不是依赖计算成本更高的时间和空间上的视频
注意力。(c)少数几层在 VideoQA中发挥着关键作用，
并作为注意力路径中的重要异常值出现。最终，我们应
用了早期退出的视觉令牌策略，在达到特定比例的层数
后丢弃所有视觉令牌，这直接基于我们的两阶段发现。
我们发现这种简单的策略可以显著减少计算开销，仅
对性能产生极小的影响。据我们所知，这是首次研究在
VideoQA背景下视频大语言模型处理和理解视频的内
部模式的工作。我们的发现增强了视频大语言模型的可
解释性，并为它们未来的发展提供了有价值的见解。

相关工作

视频大型语言模型（Video-LLMs）。现有的基于 LLM
的视频理解方法可以分为两大类：(1)专业视频 LLM。
这些方法利用冻结的 LLMs（例如. ，LLaMA3(Dubey
et al. 2024)，Mistral(Jiang et al. 2023)，和Qwen(Yang
et al. 2024)）或通用图像MLLMs（例如. ，BLIP-2(Li
et al. 2023)，LLaVA-Next(Liu et al. 2024a)，LLaMA-
Adapter(Zhang et al. 2023)），同时在特定的视频理解数
据集上微调适配器或 LoRA(Hu et al. 2022)模块。代表
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图 2: 默认因果注意力和三种类型的注意力剔除机制。为了清晰起见，我们使用两个标记（例如.,F 1
n , F

2
n）来可视化每

个帧 F1...N 和所有文本提示 T（实际上每个帧的标记数量大于 100，而所有文本提示包含少于 100个标记）。(a) 原始
因果注意力：大型语言模型中的原始因果注意力机制。(b) 文本到视频剔除：该机制移除了从文本提示到视频帧中所
有标记的注意力。(c) 视频时间剔除：此方法阻止了帧之间的时序注意力，同时保留了文本到视频和帧内空间注意力。
(d) 视频空间剔除：这种设置禁用了视频帧内的空间注意力。

性作品包括 FrozenBiLM(Yang et al. 2022)、SeViLA(Yu
et al. 2023)、LLaMA-VQA(Ko et al. 2023) 和 Video-
LLaMA(Zhang, Li, and Bing 2023)。(2)通用视频大语
言模型。这些方法没有在特定的视频理解数据集上进
行微调，而是预先在大规模视频数据集上进行了训练，
从而使它们能够处理诸如图像/视频问答、检索和字
幕等多模态任务。它们通常增强视频指令数据集的质
量和规模（例如. ，LLaVA-NeXT-Video(Zhang et al.
2024c)，LLaVA-Video(Zhang et al. 2024d)，MiniCPM-
V(Yao et al. 2024)，Qwen2.5-VL(Bai et al. 2025)，In-
ternVL2.5(Chen et al. 2024b)，InternVideo2.5(Wang
et al. 2025)，LLaVA-OneVision(Li et al. 2024a)，和
VideoLLaMA2(Cheng et al. 2024)），延长输入帧的长度
（例如.，LongVA(Zhang et al. 2024a)，LongVILA(Xue
et al. 2024)，和 Kangaroo(Liu et al. 2024b)），并优化
视频标记的位置编码（例如.，VRoPE(Liu et al. 2025)，
V2PE(Ge et al. 2024)，和 VideoRoPE(Wei et al. 2025)）
以提高视频理解能力并取得显著性能。在本文中，我们
考察了最先进的广泛使用的开源视频大语言模型，包括
LongVA、InternVideo2.5、LLaVA-OneVision (Li et al.
2024a)和 LLaVA-Video (Zhang et al. 2024d)，以确保
不同视频大语言模型的代表性生成能力。

多模态模型的可解释性。多模态模型的可解释性已成为
关键的研究重点。现有方法可以大致分为三类：(1) 黑
盒分析 (Cao et al. 2020; Frank, Bugliarello, and Elliott
2021)，通过分析输入-输出关系来理解模型行为，包括
评估各种模态 (Cao et al. 2020)的重要性及其对任务的
贡献 (Frank, Bugliarello, and Elliott 2021)；(2) 单样本
归因 (Aflalo et al. 2022; Chefer, Gur, and Wolf 2021;
Lyu et al. 2022; Stan et al. 2024)，使用注意力得分聚
合 (Aflalo et al. 2022; Stan et al. 2024)、基于梯度的方
法 (Chefer, Gur, and Wolf 2021)或模型解缠 (Lyu et al.
2022)将预测追溯到特定输入；(3) 自上而下的表征探
测 (Lindström et al. 2021; Hendricks and Nematzadeh

2021; Salin et al. 2022)，通过调查学习到的表征来揭
示高级概念，如视觉语义 (Lindström et al. 2021)、动
词理解 (Hendricks and Nematzadeh 2021)和形状或大
小 (Salin et al. 2022)。与这些方法不同，我们的研究
调查了 Video-LLMs在处理视频问答任务中的内部处理
机制。
MLLMs的机制可解释性。在图像层面的理解中，一些
早期研究已经开始通过将外部行为与特定机制联系起
来来探讨MLLMs的内部状态。这些方面包括模型参数
内的信息保留 (Basu et al. 2024)，反映在初始标记 logits
分布中的无意内容生成 (Zhao et al. 2024)，对象相关
视觉信息的跟踪和转换 (Neo et al. 2024; Schwettmann
et al. 2023)，安全机制的检测 (Xu et al. 2024)，以及冗
余视觉标记的最小化 (Zhang et al. 2024b)。最近的一项
研究 (Xiao et al. 2025)进行了全面的实验，以分析各
种视频 LLM的行为，并表明这些模型在视频问答方面
表现出色，但在时间定位上有所欠缺。此外，它们对语
言变化敏感，而受视频扰动的影响较小。虽然这项工作
主要集中在分析模型的外部行为上，但其内部透明度仍
很大程度上未被探索。我们的工作提供了一项重要的初
步努力来填补这一空白，并作为补充研究 (Xiao et al.
2025)。

调查设计

初步的

一个Video-LLM(Liu et al. 2024a)通常由预训练的
视觉编码器、投影层和仅解码器的语言模型组成，如
图 1所示。视觉编码器从视频输入中提取视觉标记，投
影层将它们映射到语言空间。然后仅解码器 LLM(Yang
et al. 2024)采用视频和文本标记，并以自回归方式输
出生成的响应标记。具体而言，一段视频序列以 N 帧
进行采样，其中每一帧通过视觉编码器（例如., CLIP-
L-14(Sun et al. 2023)）被编码为一串视觉标记 F i。这



些视觉标记随后通过一个投影层映射到文本空间。数学
上，这个过程可以表示为

V = [F i]
N
i=1, F i = Proj(Encv(xi)) ∈ Rd, (1)

其中 xi 代表第 i 帧视频，Encv(·) 表示视觉编码器，
Proj(·)是投影层，而 d是在大语言模型中的隐藏维度的
数量。类似地，文本输入通过预训练的嵌入代码簿映射
到文本嵌入标记 T。生成的文本标记与视频标记连接起
来形成多模态输入序列：MMs = [F 1, . . . ,FN ,T ], 其中
T 表示文本标记。请注意，此序列为有序排列，先以视
频标记开始，然后是文本标记。我们忽略前缀系统标记，
这些标记用于控制 LLM的输出行为。隐藏表示和注意
力。多模态输入序列随后通过 L层变换器块 (Vaswani
et al. 2017)来获取隐藏表示。每个变换器块由一个注意
力块和一个前馈网络（FFN）组成。每层的隐藏表示 `

可以写成

MMs(`) = FFN(Attn(MMs(`−1))), (2)

其中 Attn 表示注意力块。这里为了简化符号，忽略了
残差连接。LLM 最终层的最后一个标记用于解码输出
标记。要理解视频，文本标记需要从视频中提取时空信
息。此外，通过注意力机制，视频标记会在每个帧内以
及跨帧进行相互交流。
注意. 在每个注意力块中，多模态序列（MMs）被投影
到查询、键和值空间以获得 Q、K 和 V 矩阵。MMs中
的每个标记通过因果注意力 (Yang et al. 2021)与其他
所有标记交换信息。

CausalAttention(Q,K, V ) = softmax
(
QK>
√
dk

+M

)
V

(3)

这里，
√
dk 是缩放因子，M 是一个强制因果关系的掩

码矩阵，确保 token 只能关注之前的或当前的 token。
具体而言，M 定义为

Mij =

0, if j ≤ i

−∞, if j > i.
(4)

这种因果注意力如图 fig. 2(a) 所示。

三种注意力敲除类型。
注意力敲除方法 (Geva et al. 2023)是大型语言模

型可解释性领域中广泛使用的一种技术。它通过阻断
特定标记之间的注意力连接来研究这些特定信息流的
影响。在详细说明当前 Video-LLMs 中的注意力计算之
后，我们将整体因果注意力分解为三个部分：语言到
视频、视频时间注意力和视频空间注意力。相应地，我

们引入了三种类型的注意力敲除来阻止特定的注意力
流动，即. ，语言到视频敲除（LV-K）、视频时间敲除
（VT-K）和视频空间敲除（VS-K），分别如 fig. 2（b）、
（c）和（d）所示。语言到视频敲除禁止信息从视频流向
语言。视频时间敲除阻止视频帧之间的信息交换，而视
频空间敲除则防止在每一帧内的注意力流动。

调查设置
我们采用了不同的设置来进行研究。具体来说，我

们考虑两个自由度：应用注意力剔除的层和相应的剔除
类型（KT）。对于一个 L层的 Transformer，每个层的
剔除配置 LKT

i 有四种可能的选择：

LKT
i ∈ {no knockout, LV-K, VT-K, VS-K} (5)

其中 i ∈ {1, . . . , L}。这里，不进行剔除表示原始的注意
力操作。通过仔细控制这两个变量，我们定义了以下三
种研究设置来探讨关于 Video-LLMs 内部机制的三个
问题。
全局设置 1. 我们将语言到视频的注意力在某个截止深
度 i ∈ {1, 3, 5, . . . , L}之外进行阻断。每层 j 的注意力
配置定义为：

LKT
j =

no knockout, j ≤ i

LV-K, j > i
(6)

这意味着模型只能通过前 i层访问视频信息。当 i = L

时，不应用任何阻断，作为基线。我们以步长为 2 变
化 i 来追踪性能作为阻塞深度的函数。此设置用于探
索视频-大语言模型是否表现出明显的分阶段模式？，如
figs. 3 and 4所示。
全局设置 2为了评估不同注意力类型的整体贡献，我们
选择一种类型并将其对应的去除应用于所有层。我们逐
一迭代所有去除类型：

LKT
j = KT, ∀j ∈ {1, . . . , L} (7)

其中 KT ∈ {LV-K, VT-K, VS-K}。此设置用于探索在
全球范围内，每种注意力类型如何贡献于视频问答性
能？，如图 fig. 5所示。
细粒度设置。为了细粒度地检查每种注意力类
型的影响，我们应用一个特定的击除 KT ∈
{LV-K, VT-K, VS-K} 在以第 x 层（x ≥ 4）结束的 4
层滑动窗口内，使窗口外的层不进行击除。我们定义受
影响的层为：

LKT
p = KT, ∀p ∈ {x− 3, x− 2, x− 1, x} (8)

此设置用于探索在细粒度层面，每种注意力类型如
何影响不同层的视频问答？如 fig. 6所示。
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图 3: 不同基准上不同模型的性能变化归一化。设置：将语言到视频淘汰（LV-K）应用于超过特定截止深度的情况。
例如，60%表示 LV-K应用于前 60%层之后的所有层。归一化是相对于整个模型的性能而言的。
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图 4: 不同模型在 Video-MME上执行不同任务的标准化性能。设置：将语言到视频淘汰（LV-K）应用于超过某个截
止深度的情况。该标准化是相对于完整模型性能而言的。

实验和观察

本节我们将首先概述数据集和模型，然后展示实验
结果并进行详细分析。

实验详情

数据集。我们专注于视频问答任务，并使用三个已
建立的主流数据集（即. ，Video-MME(Fu et al. 2024)，
MVBench(Li et al. 2024b) 和 EgoSchema(Mangalam,
Akshulakov, and Malik 2023)）来探索 Video-LLMs 的
内部机制。这些数据集在持续时间（从 3分钟到 1小
时不等）、视角（第一人称和第三人称视角）、场景背
景（例如. 、家庭环境、电影）以及问题类型（例如. 、
时间推理和空间推理）方面有所不同。Video-MME(Fu
et al. 2024)包含总计 254小时的 900个视频，有 2,700
个人类标注的问题答案对。这些视频涵盖了六大主要
领域——知识、影视、体育、表演艺术、日常生活以
及多语言内容，并且视频长度各不相同。MVBench(Li
et al. 2024b)是一个短时长的多模态基准测试，旨在评
估MLLMs在动态任务中的时间推理能力。与静态图像
基准不同的是，它包括 20个时间相关的任务，如动作
序列、预测、物体恒存性分析以及运动分析，每个任务
有 200个样本，共计 4,000个问题答案对。EgoSchema
数据集 (Mangalam, Akshulakov, and Malik 2023)包含
从 5,000个三分钟的自我中心视频中衍生出的 5,000个
多选题。它包括一个公开可用的 500个问题子集，而完

整的评估则在服务器上进行。由于问题数量庞大，我们
采用了广泛使用的子集来进行评估。

模型。我们研究了广泛使用的开源视频大型语言模型
（Video-LLMs）(Zhang et al. 2024a; Wang et al. 2025;
Zhang et al. 2024c; Li et al. 2024a)，这些模型在多样
化的视频理解任务中实现了前沿性能。这些模型采用相
似的架构，但训练数据集不同且公开可用，这使我们能
够系统地探索 Video-LLMs 中的空间-时间建模，同时
尽量减少与模型架构相关的混淆因素。我们测试了四
个 7B模型，包括 LongVA(Zhang et al. 2024a)、Intern-
Video2.5(Wang et al. 2025)、LLaVA-Video-7B(Zhang
et al. 2024c)和 LLaVA-OneVision-7B(Li et al. 2024a)。
我们还在附录的实验部分提供了来自一个更大 34B模
型的结果，而大多数实验由于计算成本限制都是在 7B
模型上进行的。对于所有测试的模型，我们都使用相同
的均匀采样策略从每个视频中抽取 32帧。其他细节见
附录中的实现细节部分。

视频-大语言模型是否表现出明显的阶段模式？

为了调查 Video-LLMs中的视频处理是否也遵循一
个明确的分阶段模式，我们将语言到视频注意力剔除应
用于某个层之后的所有层，对应于全局设置 1。不同的
Video-LLMs在基准测试上的性能可能有所不同，并且
层数也可能不同。为了更方便地可视化和比较，我们引
入了两个指标—层比和性能比—来评估移除特定层以
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图 5: 不同基准测试的绝对性能。设置：对所有层应用不同的剔除。

外的视觉标记对模型性能的影响。层比表示相对于总层
数而言保持语言到视频注意力的比例。例如，60% 的层
比率意味着剩余 40%的层的语言到视频注意力被关闭，
从而阻止任何进一步的视觉信息流向文本标记。性能比
定量了在当前击溃设置下模型相对于其原始（无击溃）
100%性能的表现，使用 100%层进行衡量。图 3显示了
视频-LLMs 在基准测试中的表现。

我们得出以下观察结果：(i) 当所有层都无法访问
视觉标记时，三个 Video-LLMs的性能最多保留其原始
性能的 70%（例如 LongVA在 Video-MME上）和最少
48%（例如 LLaVA-Video在 EgoSchema上）。这表明视
觉信息在准确回答问题中起着关键作用，同时也展示了
嵌入语言模型中的广泛世界知识。(ii)随着层比例从 0%
增加到 60%，模型性能逐渐提高，在所有视频理解基准
测试中的 50% – 60%范围内提升最为显著。这表明中间
层对视觉信息处理的贡献最大，这一点还得到了我们精
细设置实验的支持。(iii) 在不同视频理解基准上，阻塞
超过 60%层数深度的信息对模型性能几乎没有影响。这
表明视觉信息主要在早期层进行处理，而剩余层则主要
负责高级推理—显示出一个清晰的阶段化处理模式。此
外，图 4展示了不同 Video-LLMs在 Video-MME基准
测试中的各种任务（包括感知、识别、推理和其他类型
的任务）上的性能表现情况。我们观察到，在不同的任
务类别中，随着视觉标记逐渐被阻塞，模型的性能表现
出的趋势与图 3所示相似。这进一步验证了我们的发现
的有效性。不同 Video-LLMs在各种基准上进行附加任
务级别的性能结果、定性结果和一个拥有 320亿参数的
更大规模模型实验也都观察到了类似的模式，这进一步
证实了这一趋势的存在。所有这些都可以在附录中的实
验部分找到。

在全球范围内，每种注意力类型如何贡献于视频
问答性能？

我们进一步探讨了每种注意力机制如何从全局视
角对视频问答性能做出贡献。为了回答这个问题，我们

在全局设置 2下进行了实验。具体来说，我们系统地将
每种注意力机制的剔除应用到每个模型的所有层，并在
各种基准测试中评估其表现。如图 5所示，在所有层上
应用视频时间剔除和视频空间剔除导致不同基准上的
性能下降最小。然而，跨所有层应用语言到视频的剔除
则导致显著的性能下降。这表明在 Video-LLMs中，时
空建模主要通过语言令牌与视频令牌之间的交互进行，
而时间和空间自注意力贡献较少。值得注意的是，在视
频问答任务中，时间注意力和空间注意力的计算成本通
常远高于语言到视频的注意力，当前依赖更多的是语言
到视频的注意力而不是其他两者。

在细粒度层面，每种注意力类型如何影响不同层
的视频问答？
我们在细粒度设置下进行了实验，采用每种剔除类

型作用于一个滑动窗口中的少量层（我们使用的是 4），
然后考察在这种特定窗口内每种注意机制如何影响最
终答案。这里报告了这些测试模型在每个任务数据集上
的绝对性能变化。如图 6所示，我们观察到以下几点：
(i) 对于大多数滑动窗口层，语言到视频的注意力剔除
导致显著更大的性能下降，相比之下时间或空间注意的
剔除较少，如图 fig. 6所示。(ii) 对于一部分层，应用
剔除会导致显著的性能下降，而对剩余层的应用影响较
小。(iii) 对于大多数单个层，语言到视频的注意力剔除
的影响比时间和空间注意的剔除要强。(iv) 在某些情况
下，应用剔除甚至会改善性能。例如，在长 VA的情况
下，当某些层被剔除时，在 EgoSchema上的表现得到
了提升。

潜在应用
我们之前的观察揭示了现有视频 LLMs 在视频问

答任务上的低效。例如，在全局设置中，我们在视频
LLM中识别出一个两阶段处理模式。具体来说，第二
阶段封锁所有视觉令牌可以几乎保留原始性能的同时
显著减少计算成本。以 LLaVA-Video为例，每个视频
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图 6: 不同基准下的绝对性能变化。设置：在一个滑动窗口内对各层应用不同的剔除。

帧包含 196个令牌，并且每段视频有 32帧，完整的视频
序列长度达到 196× 32个令牌。相比之下，文本序列通
常包含的令牌少于一个单帧（196个令牌）。因此，每一
层的视频注意力计算比语言自注意力高出 322 倍以上。
因此，通过在第二阶段省略视频令牌可以实现显著的计
算节省。在我们的细粒度设置中，我们发现了不同的层
级级异常值——这个属性可以被用来进一步减少第一
阶段的计算量。具体来说，时间注意力带来的计算成本
是空间注意力的 31倍。通过限制每个帧内的注意力为
空间注意力，以这些识别出的异常值为前提，我们大幅
度减少了总体计算负载。我们提出了一种简单策略：对
于 LLaVA-OneVision和 LLaVA-Video，我们在第 1层
到第 8层封锁时间注意力（第 8层被识别为一个异常
值），随后从第 18层开始移除视觉令牌。table 1中的结
果表明，这种策略在显著减少计算开销的同时保持了与
基准方法相当的性能。LongVA和 InternVideo2.5的详
细浮点运算次数和结果提供于补充材料的实验部分。

结论
本文揭示了 Video-LLMs在处理视频问答任务时的

内部工作机制。我们的实验表明，不同的 Video-LLMs
在各种基准测试和任务中表现出类似的处理模式。具体
而言，视频信息提取在早期层完成，而视频推理则发生
在后期层。此外，空间-时间建模主要由语言引导的检

索驱动，而不是通过 Video Temporal或 Video Spatial
注意力机制驱动。另外，一小部分层在视频问答中起着
关键作用。最后，我们展示了可以通过减少非关键层中
的计算并在第二阶段退出视频标记来降低计算成本。这
些发现增强了对 Video-LLMs的理解性，为深入研究这
些模型如何处理和理解视频内容提供了新的研究方向。
此外，它们还提供了改进下游任务的有效性和效率以及
优化模型设计的见解。
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