Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > math.AC

帮助 | 高级搜索

交换代数

  • 新提交
  • 交叉列表
  • 替换

查看 最近的 文章

显示 2025年08月07日, 星期四 新的列表

总共 7 条目
显示最多 2000 每页条目: 较少 | 更多 | 所有

新提交 (展示 2 之 2 条目 )

[1] arXiv:2508.04127 [中文pdf, pdf, html, 其他]
标题: 无限生成的正特征符号Rees环
标题: Infinitely generated symbolic Rees rings of positive characteristic
Kazuhiko Kurano
评论: 42页
主题: 交换代数 (math.AC) ; 代数几何 (math.AG)

设X是一个由三角形确定的域K上的toric簇。 设Y是X在(1,1)处的爆破。 在本文中,我们给出了一些条件,用于判断当Y有一个曲线C满足C^2\le 0且C.E=1(E是例外除子)时,Y的Cox环的有限生成性。 自然满射Z^3\rightarrow Cl(X)给出了环同态K[Z^3]\rightarrow K[Cl(X)]。 我们用I表示复合映射K[x,y,z]\subset K[Z^3]\rightarrow K[Cl(X)]的核。 那么Cox(Y)与扩展的符号Rees环R's(I)一致。 在Cl(X)无挠的情况下,这个理想I是空间单项式曲线的定义理想。 设Delta是下面的三角形(4.1)。 那么I是K[x,y,z]中由2*3矩阵{{x^7, y^2, z},{y^{11}, z, x^{10}}}的2-余子式生成的理想。 (在这种情况下,存在一个曲线C满足C^2=0且C.E=1。 这个理想I不是一个素理想。) 应用我们的条件,我们证明当域K的特征为2或3时,R's(I)是Noetherian的。

Let X be a toric variety over a field K determined by a triangle. Let Y be the blow-up at (1,1) in X. In this paper we give some criteria for finite generation of the Cox ring of Y in the case where Y has a curve C such that C^2 \le 0 and C.E=1 (E is the exceptional divisor). The natural surjection Z^3 \rightarrow Cl(X) gives the ring homomorphism K[Z^3] \rightarrow K[Cl(X)]. We denote by I the kernel of the composite map K[x,y,z] \subset K[Z^3] \rightarrow K[Cl(X)]. Then Cox(Y) coincides with the extended symbolic Rees ring R's(I). In the case where Cl(X) is torsion-free, this ideal I is the defining ideal of a space monomial curve. Let Delta be the triangle (4.1) below. Then I is the ideal of K[x,y,z] generated by 2-minors of the 2*3-matrix {{x^7, y^2, z},{y^{11}, z, x^{10}}}. (In this case, there exists a curve C with C^2=0 and C.E=1. This ideal I is not a prime ideal.) Applying our criteria, we prove that R's(I) is Noetherian if and only if the characteristic of K is 2 or 3.

[2] arXiv:2508.04624 [中文pdf, pdf, html, 其他]
标题: 无限多项式环上的对称模 I:幂零商
标题: Symmetric modules over the infinite polynomial ring I: nilpotent quotients
Rohit Nagpal, Andrew Snowden, Teresa Yu
评论: 40页
主题: 交换代数 (math.AC) ; 表示理论 (math.RT)

科恩证明了无限变量多项式环$R=k[x_1,x_2,\ldots]$在无限对称群$\mathfrak{S}$的作用下是诺特环。 前两位作者开始了一个项目,以详细理解$\mathfrak{S}$-等变的$R$代数。 在之前的工作中,他们分类了$\mathfrak{S}$-素理想 of$R$。 一个重要的$\mathfrak{S}$-素理想的例子是由变量的$(s+1)$次幂生成的理想$\mathfrak{h}_s$。在本文中,我们研究了$R/\mathfrak{h}_s$-模的范畴。我们得到了一些结果,并在这里仅提及三个:(a) 我们确定了该范畴的格罗滕迪克群;(b) 我们证明了克鲁尔-加布里埃尔维数为$s$;以及(c) 我们获得了导出范畴的生成元。本文将在后续工作中起到关键作用,其中我们将研究一般的模。

Cohen proved that the infinite variable polynomial ring $R=k[x_1,x_2,\ldots]$ is noetherian with respect to the action of the infinite symmetric group $\mathfrak{S}$. The first two authors began a program to understand the $\mathfrak{S}$-equivariant algebra of $R$ in detail. In previous work, they classified the $\mathfrak{S}$-prime ideals of $R$. An important example of an $\mathfrak{S}$-prime is the ideal $\mathfrak{h}_s$ generated by $(s+1)$st powers of the variables. In this paper, we study the category of $R/\mathfrak{h}_s$-modules. We obtain a number of results, and mention just three here: (a) we determine the Grothendieck group of the category; (b) we show that the Krull--Gabriel dimension is $s$; and (c) we obtain generators for the derived category. This paper will play a key role in subsequent work where we study general modules.

交叉提交 (展示 1 之 1 条目 )

[3] arXiv:2508.04439 (交叉列表自 math.AG) [中文pdf, pdf, html, 其他]
标题: 雅可比理想的一个最小解对于一般曲线排列
标题: A minimal resolution for the Jacobian ideal of a generic curve arrangement
Alexandru Dimca, Gabriel Sticlaru
主题: 代数几何 (math.AG) ; 交换代数 (math.AC)

我们考虑复射影平面上的节点曲线$C$,其不可约分支$C_i$是光滑的。 使用 Th. Kahle、H. Schenck、B. Sturmfels 和 M. Wiesmann 关于似然对应性的最新结果,描述了雅可比理想$C$的第一和第二交错模的最小生成元集合$G$。 The elements of $G$ have explicit formulas in terms of the equations $f_i=0$ of the irreducible components $C_i$ of $C$.

We consider a nodal curve $C$ in the complex projective plane whose irreducible components $C_i$ are smooth. A minimal set of generators $G$ for the first and second syzygy modules of the Jacobian ideal of $C$ are described, using recent results by Th. Kahle, H. Schenck, B. Sturmfels and M. Wiesmann on the likelihood correspondence. The elements of $G$ have explicit formulas in terms of the equations $f_i=0$ of the irreducible components $C_i$ of $C$.

替换提交 (展示 4 之 4 条目 )

[4] arXiv:2404.02057 (替换) [中文pdf, pdf, html, 其他]
标题: 通过诺特算子的非约化环中的均匀性
标题: Uniformity in nonreduced rings via Noetherian operators
Yairon Cid-Ruiz, Jack Jeffries
评论: 将出现在《国际数学研究 notices》上
主题: 交换代数 (math.AC) ; 代数几何 (math.AG)

我们通过使用诺特微分算子,证明了阿廷-里斯引理的微分版本。 作为推论,我们得到了非约化环的几个统一性结果。

We prove a differential version of the Artin-Rees lemma with the use of Noetherian differential operators. As a consequence, we obtain several uniformity results for nonreduced rings.

[5] arXiv:2506.17586 (替换) [中文pdf, pdf, html, 其他]
标题: 通过几乎阶乘环的性质来确定理想局部上同调模的关联素理想的有限性
标题: Finiteness of the set of associated primes for local cohomology modules of ideals via properties of almost factorial rings
Ryotaro Hanyu
评论: 16页
主题: 交换代数 (math.AC)

We investigate the finiteness of the set of associated primes for local cohomology modules $H_I^{i}(J)$ of an ideal $J$ generated by an $R$-sequence, through the comparison of $H_I^{d+1}(J)$ and $H_I^d(R/J)$, where $d = \mathrm{depth}_I(R)$. The properties of almost factorial rings play a key role in enabling this comparison. 在适当条件下,我们证明$\mathrm{Ass} H_I^{d+1}(J)$的有限性等价于$\mathrm{Ass} H_I^d(R/J)$的有限性。 此外,我们给出一些条件,使得$\mathrm{Ass} H_I^i(J)$对所有$i$都成立。

We investigate the finiteness of the set of associated primes for local cohomology modules $H_I^{i}(J)$ of an ideal $J$ generated by an $R$-sequence, through the comparison of $H_I^{d+1}(J)$ and $H_I^d(R/J)$, where $d = \mathrm{depth}_I(R)$. The properties of almost factorial rings play a key role in enabling this comparison. Under suitable conditions, we prove that the finiteness of $\mathrm{Ass} H_I^{d+1}(J)$ is equivalent to that of $\mathrm{Ass} H_I^d(R/J)$. Moreover, we give a few conditions under which the finiteness of $\mathrm{Ass} H_I^i(J)$ holds for all $i$.

[6] arXiv:2402.10737 (替换) [中文pdf, pdf, html, 其他]
标题: 连续平方或非平方的三元组和四元组在有限域中
标题: Triples and quadruples of consecutive squares or non-squares in a finite field
Stephen D. Cohen
主题: 数论 (math.NT) ; 交换代数 (math.AC)

设$\F$为奇素数幂阶的有限域,$q$为该有限域的阶,我们找到了在$\F$中连续非零平方元的三元组$\{\al-1,\al,\al+1 \}$的数量的显式表达式,同样也找到了连续非平方元的三元组的数量。 关键工具是 Katre 和 Rajwade 对一般有限域上的 Jacobsthal 和的计算。 这扩展了 Monzingo(1985)的结果到非素数域。 有趣的是,同样的方法允许在$q$是 5 的幂时,对$\F$上连续四元组$\{\al -1, \al,\al+1, \al +2\}$的平方和非平方数的数量进行计算。

Let $\F$ be the finite field of odd prime power order $q$, We find explicit expressions for the number of triples $\{\al-1,\al,\al+1 \}$ of consecutive non-zero squares in $\F$ and similarly for the number of triples of consecutive non-square elements. A key ingredient is the evaluation of Jacobsthal sums over general finite fields by Katre and Rajwade. This extends results of Monzingo(1985) to non-prime fields. Curiously, the same machinery alows the evaluation of the number of consecutive quadruples $\{\al -1, \al,\al+1, \al +2\}$ of square and non-squares over $\F$, when $q$ is a power of 5.

[7] arXiv:2506.00443 (替换) [中文pdf, pdf, html, 其他]
标题: 可定义的秩
标题: Definable ranks
Lothar Sebastian Krapp, Salma Kuhlmann, Lasse Vogel
评论: 19页
主题: 逻辑 (math.LO) ; 交换代数 (math.AC)

我们引入了有序域、有序阿贝尔群和有序集的可定义秩的概念。 我们研究了有序域的可定义秩与其自然赋值的值群的可定义秩之间的关系。 同样地,我们比较了有序阿贝尔群的可定义秩与其自然赋值的值集之间的关系。 我们特别考虑了几乎实闭域的情况,并给出了在该情况下,域层面、值群层面和值集层面的可定义秩相一致的条件。

We introduce the notion of the definable rank of an ordered field, ordered abelian group and ordered set, respectively. We study the relation between the definable rank of an ordered field and the definable rank of the value group of its natural valuation. Similarly we compare the definable rank of an ordered abelian group and the value set of its natural valuation. We consider in particular the case of an almost real closed field and give conditions under which the definable ranks on the level of field, of value group and of value set coincide.

总共 7 条目
显示最多 2000 每页条目: 较少 | 更多 | 所有
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号