查看 最近的 文章
本文提出了一种详细的、自包含的证明,针对以黄金比例基数表示的$\pi^2$的 BBP 类公式,$\phi$。 该公式由作者于2004年通过经验发现。 本文提供的证明建立在一个基本的几何恒等式之上,该恒等式将$\phi$与五次单位根联系起来,为结果提供了一条直观且直接的路径。 随后,通过将其扩展以建立一个新的、计算高效的 Machin 类公式,用于$\zeta(3)$,该公式通过涉及黄金比例的快速收敛分层级数表达。
This paper presents a detailed, self-contained proof of a BBP-type formula for $\pi^2$ expressed in the golden ratio base, $\phi$. The formula was discovered empirically by the author in 2004. The proof presented herein is built upon a fundamental geometric identity connecting $\phi$ to the fifth roots of unity, offering an intuitive and direct path to the result. The power of the underlying methodology is then demonstrated by extending it to establish a new, computationally efficient Machin-like formula for $\zeta(3)$, expressed through rapidly converging, hierarchical series involving the golden ratio.