Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > math.OA

帮助 | 高级搜索

算子代数

  • 新提交
  • 交叉列表
  • 替换

查看 最近的 文章

显示 2025年08月08日, 星期五 新的列表

总共 9 条目
显示最多 1000 每页条目: 较少 | 更多 | 所有

新提交 (展示 1 之 1 条目 )

[1] arXiv:2508.04837 [中文pdf, pdf, html, 其他]
标题: 纸折叠模型用于CAR代数
标题: Paper-folding models for the CAR algebra
Grigoris Kopsacheilis, Wilhelm Winter
评论: 25页,欢迎提出意见
主题: 算子代数 (math.OA) ; 动力系统 (math.DS) ; 泛函分析 (math.FA)

我们证明CAR代数具有一个Cantor谱的C*-对角,该对角不共轭于标准的AF对角。 我们通过C*-代数的分类理论得到这一结果,该对角是通过将CAR代数视为Cantor空间上自由极小作用的交叉积而得到的,其中作用群是局部有限群与无限二面体群的乘积。 构造的主要成分是一个与众所周知的正则折纸序列相关的二进制子移位。 此外,我们证明CAR代数实际上 admits 可数多个两两不共轭的Cantor谱对角,这些对角通过Li、Liao和第二作者定义的对角维数的不同值来区分。

We show that the CAR algebra admits a Cantor spectrum C*-diagonal that is not conjugate to the standard AF diagonal. We obtain this by classification theory of C*-algebras, and the diagonal arises by realising the CAR algebra as the crossed product of a free minimal action on the Cantor space, where the acting group is the product of a locally finite group with the infinite dihedral group. The main ingredient in the construction is a binary subshift associated to the well-known regular paper-folding sequence. Moreover, we show that the CAR algebra in fact admits countably many, pairwise non-conjugate, Cantor spectrum diagonals which are distinguished by the different values of their diagonal dimension, as defined by Li, Liao and the second named author.

交叉提交 (展示 4 之 4 条目 )

[2] arXiv:2508.04819 (交叉列表自 quant-ph) [中文pdf, pdf, html, 其他]
标题: 混合振子-量子比特量子处理器:稳定子态和辛操作
标题: Hybrid oscillator-qudit quantum processors: stabilizer states and symplectic operations
Sayan Chakraborty, Victor V. Albert
评论: 17页+附录,4图
主题: 量子物理 (quant-ph) ; 信息论 (cs.IT) ; 数学物理 (math-ph) ; 算子代数 (math.OA)

我们构建了在离散变量和连续变量系统组合上的稳定子态和纠错码,推广了Gottesman-Kitaev-Preskill (GKP) 量子格子形式。 我们的框架将一个量子位的离散相空间吸收进一个由谐振子的连续变量完全参数化的混合相空间。 混合量子格子的基本单元随着量子位维度的增长而增长,从而提供了一种同时测量任意大范围非对易位置和动量位移的方法。 简单的混合态可以通过对Gottesman-Kitaev-Preskill (GKP) 态和Pauli本征态应用条件位移得到,或者通过将稳定子态的一些物理量子位编码进GKP码中得到。 这些态的振荡器-量子位纠缠无法通过辛(即高斯-Clifford)操作生成,使它们区别于振荡器和量子位稳定子态的张量积。 我们通过将稳定子码与非交换环面相关联,并通过Morita等价获得逻辑算子,来构建一般的混合纠错码。 我们使用交换矩阵、整数辛矩阵和二进制码提供了示例。

We construct stabilizer states and error-correcting codes on combinations of discrete- and continuous-variable systems, generalizing the Gottesman-Kitaev-Preskill (GKP) quantum lattice formalism. Our framework absorbs the discrete phase space of a qudit into a hybrid phase space parameterizable entirely by the continuous variables of a harmonic oscillator. The unit cell of a hybrid quantum lattice grows with the qudit dimension, yielding a way to simultaneously measure an arbitrarily large range of non-commuting position and momentum displacements. Simple hybrid states can be obtained by applying a conditional displacement to a Gottesman-Kitaev-Preskill (GKP) state and a Pauli eigenstate, or by encoding some of the physical qudits of a stabilizer state into a GKP code. The states' oscillator-qudit entanglement cannot be generated using symplectic (i.e., Gaussian-Clifford) operations, distinguishing them as a resource from tensor products of oscillator and qudit stabilizer states. We construct general hybrid error-correcting codes by relating stabilizer codes to non-commutative tori and obtaining logical operators via Morita equivalence. We provide examples using commutation matrices, integer symplectic matrices, and binary codes.

[3] arXiv:2508.04890 (交叉列表自 math.FA) [中文pdf, pdf, html, 其他]
标题: 超限算子在希尔伯特空间上的不动点:阿尔派代数方法
标题: Transfinite Operator Fixed Points on Hilbert Spaces: An Alpay Algebra Approach
Faruk Alpay, Hamdi Alakkad, Taylan Alpay
评论: 13页
主题: 泛函分析 (math.FA) ; 算子代数 (math.OA) ; 谱理论 (math.SP)

本工作开发了一个基于自伴算子超限迭代的泛函分析框架。 从一个在希尔伯特空间 $H$上定义良好的自伴算子 $A$开始,依次应用谱变换函子 $\Phi$。 此过程通过在每个序数阶段逐步扩大环境希尔伯特空间,生成一个超限算子序列 $\{\Phi^{\alpha}(A)\}_{\alpha<\Omega}$。 在 $\Phi$满足适当的连续性和单调性条件的情况下,通过超限归纳法证明该序列收敛,并在最小序数 $\Omega$处稳定,使得 $\Phi^{\Omega+1}(A) = \Phi^{\Omega}(A)$。 结果极限算子,$A_{\infty} = \Phi^{\infty}(A)$,是变换的一个自伴不动点,满足$\Phi(A_{\infty}) = A_{\infty}$。其谱由关系式$$\sigma(A_{\infty})=\bigcap_{n<\infty}f^{\,n}\bigl(\sigma(A)\bigr),$$表示,其中$f$是由$\Phi$引入的谱映射。 对于规范变换,如$\Phi(A)=A^2$或半群作用$\Phi_t(A)=e^{tA}$,极限算子$A_{\infty}$被识别为初始算子$A$的迭代不变特征空间上的正交投影。 主要贡献包括一个超限谱映射定理,一个关于$A_{\infty}$在酉等价下的唯一性的证明,以及将离散迭代重新解释为$L^2$类型函数空间上的演化半群。 该框架被证明可以涵盖并推广经典的渐近投影结果。 这项研究部分受到 F. Alpay(arXiv:2505.15344)引入的代数结构的启发。 附录概述了在算子理论中的一系列开放问题的层次结构,其复杂性由迭代阶段来索引。

This work develops a functional-analytic framework based on the transfinite iteration of a self-adjoint operator. Beginning with a densely defined self-adjoint operator $A$ on a Hilbert space $H$, a spectral-transform functor $\Phi$ is applied iteratively. This process generates a transfinite sequence of operators, $\{\Phi^{\alpha}(A)\}_{\alpha<\Omega}$, by progressively enlarging the ambient Hilbert space at each ordinal stage. Under suitable continuity and monotonicity conditions on $\Phi$, it is established via transfinite induction that the sequence converges, stabilizing at a minimal ordinal $\Omega$ where $\Phi^{\Omega+1}(A) = \Phi^{\Omega}(A)$. The resultant limit operator, $A_{\infty} = \Phi^{\infty}(A)$, is a self-adjoint fixed point of the transformation, satisfying $\Phi(A_{\infty}) = A_{\infty}$. Its spectrum is characterized by the relation $$\sigma(A_{\infty})=\bigcap_{n<\infty}f^{\,n}\bigl(\sigma(A)\bigr),$$ where $f$ is the spectral map induced by $\Phi$. For canonical transformations, such as $\Phi(A)=A^2$ or the semigroup action $\Phi_t(A)=e^{tA}$, the limit operator $A_{\infty}$ is identified as the orthogonal projection onto the iteratively invariant eigenspaces of the initial operator $A$. Principal contributions include a transfinite spectral-mapping theorem, a proof of the uniqueness of $A_{\infty}$ up to unitary equivalence, and a reinterpretation of the discrete iteration as an evolution semigroup on an $L^2$-type function space. The framework is demonstrated to subsume and generalize classical asymptotic-projection results. This study is partly motivated by the algebraic structures introduced by F. Alpay (arXiv:2505.15344). An appendix outlines a hierarchy of open problems in operator theory whose complexity is indexed by the iterative stage.

[4] arXiv:2508.04922 (交叉列表自 math.QA) [中文pdf, pdf, html, 其他]
标题: 多项式恒等式和有理量子球面的Azumaya概形
标题: Polynomial identities and Azumaya loci for rational quantum spheres
Alexandru Chirvasitu
评论: 20页 + 参考文献
主题: 量子代数 (math.QA) ; 泛函分析 (math.FA) ; 算子代数 (math.OA) ; 环与代数 (math.RA)

我们证明了关于非交换 Natsume-Olsen 球体$\mathbb{S}^{2n-1}_{\theta}$沿反对称矩阵$\theta\in \mathbb{R}$变形的一些结构和同构结果。 这些包括(a)两个形式为$\mathbb{S}^{3}_{\theta}\otimes M_n$的$C^*$代数在显然的情况下恰好是同构的这一事实;(b)$m$和$n$可以从$C(\mathbb{S}^{2m-1}_{\theta})\otimes M_n$的同构类中恢复这一事实;(c)对于有理数$\theta$,$C(\mathbb{S}^{2m-1}_{\theta})$的PI性质、PI次数和Azumaya局部性,以及它们的中心作为$\mathbb{S}^{2n-1}$的分支覆盖的函数代数的实现;(d)对于有理数$\theta$再次,$C(\mathbb{S}^{2m-1}_{\theta})$在其中心上的拓扑有限生成性,而代数有限生成性等价于经典性(等价地,Azumaya)。

We prove a number of structure and isomorphism results concerning the non-commutative Natsume-Olsen spheres $\mathbb{S}^{2n-1}_{\theta}$ deformed along a skew-symmetric matrix $\theta\in \mathbb{R}$. These include (a) the fact that two $C^*$-algebras of the form $\mathbb{S}^{3}_{\theta}\otimes M_n$ are isomorphic precisely in the obvious cases; (b) the fact that $m$ and $n$ are recoverable from the isomorphism class of $C(\mathbb{S}^{2m-1}_{\theta})\otimes M_n$; (c) the PI character, PI degree and Azumaya loci of $C(\mathbb{S}^{2m-1}_{\theta})$ for rational $\theta$, along with a realization of their centers as (function algebras of) branched cover of $\mathbb{S}^{2n-1}$ and (d) for rational $\theta$ again, the topological finite generation of $C(\mathbb{S}^{2m-1}_{\theta})$ over their centers, with algebraic finite generation equivalent to being classical (equivalently, Azumaya).

[5] arXiv:2508.05569 (交叉列表自 math.FA) [中文pdf, pdf, html, 其他]
标题: 调和分析与广义微分子代数中的自动连续性
标题: Harmonic analysis and automatic continuity in the context of generalized differential subalgebras
Felipe I. Flores
评论: 26页。欢迎提出意见
主题: 泛函分析 (math.FA) ; 算子代数 (math.OA)

对于适当的参数$k,p,q$,我们引入并系统地研究了$(k,p,q)$-微分子代数类。 这是一个广泛的巴拿赫$^*$-代数类,由它们与$C^*$-包络的关系定义。 一些例子是由可赋范的双边$^*$-理想、闭合$^*$-导数的定义域、完整的希尔伯特代数以及各种类型的加权卷积代数给出的。 我们证明了这类代数具有各种有趣的性质,例如基于光滑函数的泛函演算下的闭性,$^*$-正则性,Wiener性质$(W)$,甚至自动连续性性质。

For appropriate parameters $k,p,q$, we introduce and systematically study the class of $(k,p,q)$-differential subalgebras. This is a vast class of Banach $^*$-algebras defined by their relation with their $C^*$-envelopes. Some examples are given by normable two-sided $^*$-ideals, domains of closed $^*$-derivations, full Hilbert algebras, and some weighted convolution algebras of various kinds. We prove that this class of algebras possesses various interesting properties, such as closedness under a functional calculus based on smooth functions, $^*$-regularity, Wiener's property $(W)$, and even properties of automatic continuity.

替换提交 (展示 4 之 4 条目 )

[6] arXiv:2311.12428 (替换) [中文pdf, pdf, html, 其他]
标题: 奇异$\rm C^*$-完成的埃塔尔群胚
标题: Exotic $\rm C^*$-completions of étale groupoids
Mathias Palmstrøm
评论: v5:27页;第5节的主要结果有轻微改进,将“双曲群胚”改为“度量双曲群胚”,其他为小的更正;将发表于《算子理论杂志》
主题: 算子代数 (math.OA)

我们将布朗和根特纳引入的可数离散群的理想完成推广到第二可数豪斯多夫埃塔勒群胚。 具体来说,对于由群胚上有界博雷尔函数代数中的一个代数理想以及单位空间上的拟不变测度的一个非空族组成的每对,我们以一种自然包含全群胚C*-代数和约化群胚C*-代数构造方式的方式构造一个$\rm C^*$-代数。 我们研究这些构造与哈格尔普性质之间的联系,并利用该构造来证明某些类群胚存在许多奇异的群胚$\rm C^*$-代数。 我们调查这些构造与哈格尔普性质之间的联系,并使用该构造来证明某些类群胚存在许多奇异的群胚$\rm C^*$-代数。

We generalize the ideal completions of countable discrete groups, as introduced by Brown and Guentner, to second countable Hausdorff \'etale groupoids. Specifically, to every pair consisting of an algebraic ideal in the algebra of bounded Borel functions on the groupoid and a non-empty family of quasi-invariant measures on the unit space, we construct a $\rm C^*$-algebra in a way which naturally encapsulates the constructions of the full and reduced groupoid $\rm C^*$-algebras. We investigate the connection between these constructions and the Haagerup property, and use the construction to show the existence of many exotic groupoid $\rm C^*$-algebras for certain classes of groupoids.

[7] arXiv:2408.06171 (替换) [中文pdf, pdf, html, 其他]
标题: 刚性图乘积
标题: Rigid Graph Products
Matthijs Borst, Martijn Caspers, Enli Chen
评论: 新增了一个结果(定理F),并缩短了第5.1节,尽可能给出了无限图的结果
主题: 算子代数 (math.OA) ; 泛函分析 (math.FA)

我们证明了冯·诺依曼代数图积的刚性性质。 我们引入了刚性图的概念,并定义了一类称为$\mathcal{C}_{\rm Rigid}$的 II$_1$-因子。 对于该类中的冯·诺依曼代数,我们展示了唯一的刚性图积分解。 特别是,我们得到了新的冯·诺依曼代数类的唯一素分解结果和唯一自由积分解结果。 此外,我们表明对于许多 II$_1$-因子的图积,包括超有限的 II$_1$-因子,我们可以从图积中恢复图的半径,误差不超过常数 2。 我们还证明了几项关于相对可换性和图积中(拟)正规化子嵌入的技术性结果。 此外,我们给出了图积为核的充分条件,并表征了图积的强固性、素性和自由不可分解性。

We prove rigidity properties for von Neumann algebraic graph products. We introduce the notion of rigid graphs and define a class of II$_1$-factors named $\mathcal{C}_{\rm Rigid}$. For von Neumann algebras in this class we show a unique rigid graph product decomposition. In particular, we obtain unique prime factorization results and unique free product decomposition results for new classes of von Neumann algebras. Furthermore, we show that for many graph products of II$_1$-factors, including the hyperfinite II$_1$-factor, we can, up to a constant 2, retrieve the radius of the graph from the graph product. We also prove several technical results concerning relative amenability and embeddings of (quasi)-normalizers in graph products. Furthermore, we give sufficient conditions for a graph product to be nuclear and characterize strong solidity, primeness and free-indecomposability for graph products.

[8] arXiv:2507.22833 (替换) [中文pdf, pdf, html, 其他]
标题: 实非交换凸性 II:极值与非交换凸函数
标题: Real Noncommutative Convexity II: Extremality and nc convex functions
David P. Blecher, Caleb Becker McClure
评论: 38页(此版本是对首次ArXiV提交的很小的修改,没有实质性的数学改动)。附录由T. Russell撰写
主题: 算子代数 (math.OA) ; 数学物理 (math-ph) ; 泛函分析 (math.FA)

我们继续研究实非交换(nc)凸性理论,遵循Davidson和Kennedy最近发展的深刻复数情况。 本文重点研究实数情况下nc极点(以及纯点和极大点)和nc Choquet边界理论,以及实数nc凸函数和实数nc下半连续函数的理论,以及实数nc凸包络。 我们的主要重点是这些概念如何与复化相互作用。 例如,我们的一些论文仔细分析了各种“极点”或“极大”概念如何与我们之前提出的凸集的复化概念相互作用。 在实数情况下出现了一些新的特点,特别是在我们论文的后半部分,包括非交换凸函数的复化的新概念,以及非交换函数的凸包络的复化。 附录由T. Russell撰写。

We continue with the theory of real noncommutative (nc) convexity, following the recent and profound complex case developed by Davidson and Kennedy. The present paper focuses on the theory of nc extreme (and pure and maximal) points and the nc Choquet boundary in the real case, and on the theory of real nc convex and semicontinuous functions and real nc convex envelopes. Our main emphasis is on how these interact with complexification. For example some of our paper analyzes carefully how various notions of `extreme' or `maximal' interact with our earlier concept of the complexification of a convex set. Several new features appear in the real case, particularly in later sections of our paper, including the novel notion of the complexification of a nc convex function, and the complexification of the convex envelope of a nc function. With an Appendix by T. Russell.

[9] arXiv:2307.11632 (替换) [中文pdf, pdf, html, 其他]
标题: 通过普遍性对具有马尔可夫依赖性的矩阵和的尖锐集中
标题: Sharp concentration for sums of matrices with Markovian dependence through universality
Alexander Van Werde, Jaron Sanders
主题: 概率 (math.PR) ; 算子代数 (math.OA)

我们证明了一个由$\psi$-混合马尔可夫链生成的随机矩阵之和具有与具有相同均值和协方差结构的高斯矩阵相似的谱性质。 这一非渐近普适性原理在结合高斯文献中的最新进展时,能够得到精确的集中不等式。 我们通过例子说明了这一理论,展示了当应用于Wigner型矩阵时,它如何相对于之前的马尔可夫矩阵集中结果实现多项式维度改进,并说明如何恢复用于研究谱聚类技术的模型的精确极限值。 证明中的一个关键挑战是,仅基于经典累积量的技术,这些技术在求和项独立时可以使用,在马尔可夫设置中单独使用时不足以提供有效的估计。 我们的方法利用了布尔累积量和测度变换论证。

We prove that a sum of random matrices generated by a $\psi$-mixing Markov chain has similar spectral properties to a Gaussian matrix with the same mean and covariance structure. This nonasymptotic universality principle enables sharp concentration inequalities when combined with recent advances in the Gaussian literature. We illustrate the theory with examples, showing how it enables polynomial dimensional improvements relative to previous Markovian matrix concentration results when applied to Wigner-type matrices, and how one can recover sharp limiting values for a model used to study of spectral clustering techniques. A key challenge in the proof is that techniques based only on classical cumulants, which can be used when summands are independent, are not sufficient on their own for efficient estimates in a Markovian setting. Our approach exploits Boolean cumulants and a change--of--measure argument.

总共 9 条目
显示最多 1000 每页条目: 较少 | 更多 | 所有
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号