Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > math.QA

帮助 | 高级搜索

量子代数

  • 交叉列表
  • 替换

查看 最近的 文章

显示 2025年08月06日, 星期三 新的列表

总共 7 条目
显示最多 2000 每页条目: 较少 | 更多 | 所有

交叉提交 (展示 1 之 1 条目 )

[1] arXiv:2508.02983 (交叉列表自 math.QA) [中文pdf, pdf, html, 其他]
标题: Nijenhuis预李双代数,Nijenhuis李双代数和\sss -方程
标题: Nijenhuis pre-Lie bialgebras, Nijenhuis Lie bialgebras and \sss-equation
Li Guo, Tianshui Ma
评论: 28页
主题: 量子代数 (math.QA) ; 表示理论 (math.RT)

预李代数这一重要概念的两个方面是预李双代数(或左对称双代数),其动机来自拟凯勒李代数,以及源于其形变理论的预李代数上的尼延豪斯算子。在本文中,我们提出了一种通过伪赫辛预李代数来构造预李代数上的尼延豪斯算子的方法。接下来,我们引入了预李余代数上的尼延豪斯算子的概念,并给出了它们的构造方法,一种是从线性相容的预李余代数结构得到,另一种是从预李双代数得到。然后,我们通过使用对偶表示在尼延豪斯预李代数上获得了一个双代数结构,并研究了它们与\sss -方程和$\mathcal{O}$-算子之间的关系。最后,我们证明了一个平衡的尼延豪斯预李双代数产生一个尼延豪斯李双代数。

Two aspects on the important notion of pre-Lie algebras are pre-Lie bialgebras (or left-symmetric bialgebras) with motivation from para-K\"ahler Lie algebras, and Nijenhuis operators on pre-Lie algebras arising from their deformation theory. In this paper, we present a method to construct Nijenhuis operators on a pre-Lie algebras via pseudo-Hessian pre-Lie algebras. Next, we introduce the notion of Nijenhuis operators on pre-Lie coalgebras and give their constructions, one from a linearly compatible pre-Lie coalgebra structure, and one from pre-Lie bialgebras. We then obtain a bialgebraic structure on Nijenhuis pre-Lie algebras by using dual representations and study their relations with \sss-equations and $\mathcal{O}$-operators. Finally we prove that a Nijenhuis balanced pre-Lie bialgebra produces a Nijenhuis Lie bialgebra.

替换提交 (展示 6 之 6 条目 )

[2] arXiv:2307.06485 (替换) [中文pdf, pdf, 其他]
标题: 3-范畴的轨道空间完成
标题: Orbifold completion of 3-categories
Nils Carqueville, Lukas Müller
评论: 58页,许多图表和图像,v2:增加了参考文献、澄清和改进,v3:小的改进
主题: 量子代数 (math.QA) ; 高能物理 - 理论 (hep-th) ; 数学物理 (math-ph) ; 范畴论 (math.CT)

我们发展了一个三维“轨道空间完成”的一般理论,以描述拓扑量子场论的(广义)轨道空间以及它们的所有缺陷。 给定一个半严格3-范畴$\mathcal{T}$,其中所有1-和2-态射都有伴随(更准确地说,是一个具有对偶的Gray范畴),我们构造3-范畴$\mathcal{T}_{\textrm{orb}}$作为某些在$\mathcal{T}$中编码三角剖分不变性的$E_1$-代数的Morita范畴。 我们证明在$\mathcal{T}_{\textrm{orb}}$中,所有1-和2-态射再次都有伴随,它包含$\mathcal{T}$作为全子范畴,并我们认为但未证明它满足一个蕴含$(\mathcal{T}_{\textrm{orb}})_{\textrm{orb}} \cong \mathcal{T}_{\textrm{orb}}$的普遍性质。 这是文献[CR]中工作的范畴化。 通过设计进行的轨道空间完成使我们能够将轨道空间构造从闭合TQFT提升到缺陷TQFT更为丰富的世界中。 我们通过从第一原理构造一个包含所有缺陷的通用三维状态和模型来说明这一点,并解释最近关于Witt等价的Reshetikhin--Turaev理论之间的缺陷的研究自然地作为轨道空间完成的一个特例出现。

We develop a general theory of 3-dimensional ``orbifold completion'', to describe (generalised) orbifolds of topological quantum field theories as well as all their defects. Given a semistrict 3-category $\mathcal{T}$ with adjoints for all 1- and 2-morphisms (more precisely, a Gray category with duals), we construct the 3-category $\mathcal{T}_{\textrm{orb}}$ as a Morita category of certain $E_1$-algebras in $\mathcal{T}$ which encode triangulation invariance. We prove that in $\mathcal{T}_{\textrm{orb}}$ again all 1- and 2-morphisms have adjoints, that it contains $\mathcal{T}$ as a full subcategory, and we argue, but do not prove, that it satisfies a universal property which implies $(\mathcal{T}_{\textrm{orb}})_{\textrm{orb}} \cong \mathcal{T}_{\textrm{orb}}$. This is a categorification of the work in [CR]. Orbifold completion by design allows us to lift the orbifold construction from closed TQFT to the much richer world of defect TQFTs. We illustrate this by constructing a universal 3-dimensional state sum model with all defects from first principles, and we explain how recent work on defects between Witt equivalent Reshetikhin--Turaev theories naturally appears as a special case of orbifold completion.

[3] arXiv:2507.05845 (替换) [中文pdf, pdf, html, 其他]
标题: 从有理顶点算子代数的共形块中得到的模 functor
标题: Modular functors from conformal blocks of rational vertex operator algebras
Chiara Damiolini, Lukas Woike
评论: 31页;v2:小幅度修改
主题: 量子代数 (math.QA) ; 数学物理 (math-ph) ; 代数几何 (math.AG) ; 代数拓扑 (math.AT)

对于顶点算子代数$V$,可以自然地按照 Frenkel-Ben-Zvi 的构造并由 Damiolini-Gibney-Tarasca 推广来定义共形块的空间。如果$V$是强有理的,这些共形块的空间在适合的代数曲线模空间上形成向量丛。在本文中,在相同的假设下,我们建立了广泛预期的拓扑结果,即共形块的空间产生一个模 functor,即在曲面操作符的扩展上的模代数。这意味着,可接受的$V$-模的范畴$\mathcal{C}_V$从零亏格曲面的拓扑中继承了一个带状 Grothendieck-Verdier 结构,甚至导致了一个模融合范畴的结构,其结构直接来自$V$的共形块的空间。作为直接结果,我们证明了来自共形块的模 functor 可以扩展为一个三维拓扑场理论,并且可以用分解同调来描述。

For a vertex operator algebra $V$, one may naturally define spaces of conformal blocks following a construction of Frenkel-Ben-Zvi generalized by Damiolini-Gibney-Tarasca. If $V$ is strongly rational, these spaces of conformal blocks form vector bundles over a suitable moduli space of algebraic curves. In this article, we establish, under the same assumptions, the widely expected topological result that the spaces of conformal blocks produce a modular functor, i.e. a modular algebra over an extension of the surface operad. This entails that the category $\mathcal{C}_V$ of admissible $V$-modules inherits from the topology of genus zero surfaces a ribbon Grothendieck-Verdier structure that leads even to the structure of a modular fusion category whose structure comes directly from the spaces of conformal blocks of $V$. As a direct consequence, we prove that the modular functor from conformal blocks extends to a three-dimensional topological field theory and comes with a description in terms of factorization homology.

[4] arXiv:2404.03935 (替换) [中文pdf, pdf, html, 其他]
标题: 与Kodaira循环和正交簇相关的Feigin-Odesskii括号
标题: Feigin-Odesskii brackets associated with Kodaira cycles and positroid varieties
Zheng Hua, Alexander Polishchuk
评论: 在此版本中,我们更正了旧定理3.2.1中的一个错误。它现在被新的定理3.2.2所替代。Feigin-Odesskii括号和标准括号应该通过在极大环面上的双向量场的扭转变换而有所不同。
主题: 代数几何 (math.AG) ; 组合数学 (math.CO) ; 量子代数 (math.QA) ; 表示理论 (math.RT)

我们将格拉斯曼流形中的开放正则素簇$G(k,n)$与某些向量丛复形的模空间在科达拉环$C^n$上建立联系,利用后者模空间上的偏移泊松结构,并将其与$G(k,n)$上标准泊松结构的某种扭变相关联。 %通过其极大环上的双矢量场。 这种联系使我们能够解决向量丛在$C^n$上的扩张分类问题。 基于此解决方案,我们进一步对$G(k,n)$中所有正则素簇在扭曲的标准泊松结构下的辛叶进行了分类。 此外,我们得到了在扭曲的标准泊松结构下$G(k,n)$的辛叶模堆栈的显式描述,作为向量丛堆栈的一个开子堆栈$C^n$。

We establish a link between open positroid varieties in the Grassmannians $G(k,n)$ and certain moduli spaces of complexes of vector bundles over Kodaira cycle $C^n$, using the shifted Poisson structure on the latter moduli spaces and relating them to a certain twist of the standard Poisson structure on $G(k,n)$. %by a bivector field on its maximal torus. This link allows us to solve a classification problem for extensions of vector bundles over $C^n$. Based on this solution we further classify the symplectic leaves of all positroid varieties in $G(k,n)$ with respect to the twisted standard Poisson structure. Moreover, we get an explicit description of the moduli stack of symplectic leaves of $G(k,n)$ with the twisted standard Poisson structure as an open substack of the stack of vector bundles on $C^n$.

[5] arXiv:2406.00964 (替换) [中文pdf, pdf, html, 其他]
标题: 椭圆量子环面代数 U_{t_1,t_2,p}(gl_{1,tor}), 顶点算子和 L-算子
标题: Elliptic Quantum Toroidal Algebra U_{t_1,t_2,p}(gl_{1,tor}), Vertex Operators and L-operators
Hitoshi Konno, Andrey Smirnov
评论: 55页,即将发表于《纯粹数学高级研究》
主题: 表示理论 (math.RT) ; 高能物理 - 理论 (hep-th) ; 代数几何 (math.AG) ; 量子代数 (math.QA)

我们通过结合U_{t_1,t_2,p}(gl_{1,tor})的表示和瞬子模空间M(n,r)的椭圆稳定包的概念,提出了椭圆量子环面代数U_{t_1,t_2,p}(gl_{1,tor})的新顶点算子,包括I型和II型对偶。 这些顶点算子通过它们的复合再现了椭圆稳定包的混排乘积公式。 我们还证明了顶点算子复合的真空期望值给出了M(n,r)的K理论顶点函数的正确公式。 随后,我们推导了顶点算子之间的交换关系,并构造了一个L算子,该算子满足RLL=LLR^*关系,其中R和R^*是作为椭圆稳定包的过渡矩阵定义的椭圆动态瞬子R矩阵。 假设L的通用形式,我们以它为基础定义了一个余乘法\Delta 。 结果表明,新的顶点算子是关于\Delta 的 U_{t_1,t_2,p}(gl_{1,tor})-模的交织算子。

We propose new vertex operators, both the type I and the type II dual, of the elliptic quantum toroidal algebra U_{t_1,t_2,p}(gl_{1,tor}) by combining representations of U_{t_1,t_2,p}(gl_{1,tor}) and the notions of the elliptic stable envelopes for the instanton moduli space M(n,r). The vertex operators reproduce the shuffle product formula of the elliptic stable envelopes by their composition. We also show that the vacuum expectation value of a composition of the vertex operators gives a correct formula of the K-theoretic vertex function for M(n,r). We then derive exchange relations among the vertex operators and construct a L-operator satisfying the RLL=LLR^* relation with R and R^* being elliptic dynamical instanton R-matrices defined as transition matrices of the elliptic stable envelopes. Assuming a universal form of L, we define a comultiplication \Delta in terms of it. It turns out that the new vertex operators are intertwining operators of the U_{t_1,t_2,p}(gl_{1,tor})-modules w.r.t \Delta.

[6] arXiv:2406.13172 (替换) [中文pdf, pdf, 其他]
标题: 仿射和循环网络
标题: Affine and cyclotomic webs
Linliang Song, Weiqiang Wang
评论: V3,小的更正和更新,将发表在JLMS
主题: 表示理论 (math.RT) ; 量子代数 (math.QA)

通过推广多项式网络范畴,我们引入了一个图示的$\Bbbk$-线性单子范畴,称为仿射网络范畴,适用于任何交换环$\Bbbk$。获得了仿射网络范畴及其分圆商范畴的由基本图示组成的整基。建立了分圆网络范畴与有限$W$-代数之间的联系,从而得到了由Brundan-Kleshchev引入的$W$-Schur代数的幂等子代数的图示表示。仿射网络范畴将被用作另一个$\Bbbk$-线性单子范畴,即仿射Schur范畴的基本构建块,该范畴在后续工作中提出。

Generalizing the polynomial web category, we introduce a diagrammatic $\Bbbk$-linear monoidal category, the affine web category, for any commutative ring $\Bbbk$. Integral bases consisting of elementary diagrams are obtained for the affine web category and its cyclotomic quotient categories. Connections between cyclotomic web categories and finite $W$-algebras are established, leading to a diagrammatic presentation of idempotent subalgebras of $W$-Schur algebras introduced by Brundan-Kleshchev. The affine web category will be used as a basic building block of another $\Bbbk$-linear monoidal category, the affine Schur category, formulated in a sequel.

[7] arXiv:2503.01366 (替换) [中文pdf, pdf, html, 其他]
标题: 斜括号中下中央序列和上中央序列的类似物:综述
标题: Analogs of the lower and upper central series in skew braces: a survey
Cindy Tsang
评论: 30页;最终版本将被发表
主题: 群论 (math.GR) ; 量子代数 (math.QA)

一个斜环是一种类似环和群的代数结构,在研究Yang-Baxter方程的集合论解时被引入。 在本文综述中,我们将考虑斜环的左序列、右序列、幂零序列和消去序列。 它们可以看作是群的下中心序列和上中心序列的类似物。 除了这些序列的一些已知事实外,我们将证明关于它们项之间关系的几个新结果。 我们还将考虑由Bonatto和Jedlička定义的斜环的下中心序列。 正如我们将解释的那样,它似乎是对斜环的下中心序列的“正确”类比。 关于这一点,我们还将讨论Ballester-Bolinches等人提出的理想下中心序列的概念。

A skew brace is a ring-like and group-like algebraic structure that was introduced in the study of set-theoretic solutions to the Yang-Baxter equation. In this survey paper, we shall consider the left series, right series, socle series, and annihilator series of skew braces. They may be regarded as analogs of the lower and upper central series of groups. Other than some well-known facts regarding these series, we shall prove several new results about the relationship among their terms. We shall also consider the lower central series of skew braces that was defined by Bonatto and Jedli\v{c}ka. As we shall explain, it seems to be the ``correct" analog of the lower central series for skew braces. Concerning this, we shall also discuss the notion of the lower central series of ideals that is due to Ballester-Bolinches et al.

总共 7 条目
显示最多 2000 每页条目: 较少 | 更多 | 所有
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号