数学 > 泛函分析
[提交于 2010年9月2日
]
标题: 平面双调和算子的嵌入本征值的扰动
标题: Perturbations of embedded eigenvalues for the planar bilaplacian
摘要: 在无界域上的算子可能会获得嵌入在本质谱中的特征值。 确定这些嵌入特征值在底层算子的小扰动下的命运是一个具有挑战性的任务,这种特征值的持续性性质与本质谱的重数紧密相关。 在本文中,我们考虑带有势的平面双调和算子,并证明在适当势空间中,使得嵌入特征值持续存在的势的集合是一个无限维流形,且具有无限余维。
文献和引用工具
与本文相关的代码,数据和媒体
alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)
演示
推荐器和搜索工具
arXivLabs:与社区合作伙伴的实验项目
arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。
与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。
有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.