Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > math > arXiv:1206.1395

帮助 | 高级搜索

数学 > 统计理论

arXiv:1206.1395 (math)
[提交于 2012年6月7日 ]

标题: 精确的大偏差:依赖的正则变化序列

标题: Precise large deviations for dependent regularly varying sequences

Authors:Thomas Mikosch, Olivier Wintenberger (CEREMADE)
摘要: 我们研究了平稳正则变化随机变量序列的一个精确的大偏差原理。 这一原理扩展了A.V. Nagaev(1969)和S.V. Nagaev(1979)的经典结果,适用于独立同分布的正则变化序列。 证明使用了Jakubowski(1993,1997)在无限方差稳定极限中心极限定理中的思想。 我们将这一原理应用于\sv 模型、满足多项式漂移条件的马尔可夫链函数以及线性和非线性随机递归方程的解。
摘要: We study a precise large deviation principle for a stationary regularly varying sequence of random variables. This principle extends the classical results of A.V. Nagaev (1969) and S.V. Nagaev (1979) for iid regularly varying sequences. The proof uses an idea of Jakubowski (1993,1997) in the context of centra limit theorems with infinite variance stable limits. We illustrate the principle for \sv\ models, functions of a Markov chain satisfying a polynomial drift condition and solutions of linear and non-linear stochastic recurrence equations.
主题: 统计理论 (math.ST) ; 概率 (math.PR)
引用方式: arXiv:1206.1395 [math.ST]
  (或者 arXiv:1206.1395v1 [math.ST] 对于此版本)
  https://doi.org/10.48550/arXiv.1206.1395
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Olivier Wintenberger [查看电子邮件]
[v1] 星期四, 2012 年 6 月 7 日 04:33:29 UTC (72 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • TeX 源代码
  • 其他格式
查看许可
当前浏览上下文:
math.ST
< 上一篇   |   下一篇 >
新的 | 最近的 | 2012-06
切换浏览方式为:
math
math.PR
stat
stat.TH

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号