数学 > 组合数学
[提交于 2014年5月31日
]
标题: 向量空间上有限域大子集的距离图中的长路径
标题: Long paths in the distance graph over large subsets of vector spaces over finite fields
摘要: 设$E \subset {\Bbb F}_q^d$为一个具有$q$个元素的有限域上的$d$维向量空间。 通过让顶点成为$E$的元素,并且当向量$x,y \in E$对应的两个顶点之间有一条边时,构造一个图,称为$E$的距离图,如果$||x-y||={(x_1-y_1)}^2+\dots+{(x_d-y_d)}^2=1$。 我们将证明,如果$E$的大小足够大,那么$E$的距离图包含长的不重叠路径和高程度的顶点。
文献和引用工具
与本文相关的代码,数据和媒体
alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)
演示
推荐器和搜索工具
arXivLabs:与社区合作伙伴的实验项目
arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。
与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。
有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.