Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > math > arXiv:1701.00391

帮助 | 高级搜索

数学 > 数论

arXiv:1701.00391 (math)
[提交于 2017年1月2日 (v1) ,最后修订 2018年1月19日 (此版本, v2)]

标题: 欧拉和的广义超调和数

标题: Euler sums of generalized hyperharmonic numbers

Authors:Ce Xu
摘要: 广义超调和数$h_n^{(m)}(k)$是通过多重调和数定义的。 我们证明了超调和数$h_n^{(m)}(k)$满足某种递推关系,这使我们能够用经典的调和数来表示它们。 此外,我们证明了带有超调和数的欧拉型求和:\[S\left( {k,m;p} \right): = \sum\limits_{n = 1}^\infty {\frac{{h_n^{\left( m \right)}\left( k \right)}}{{{n^p}}}} \;\;\left(p\geq m+1,\ {k = 1,2,3} \right)\]可以表示为黎曼zeta值和调和数乘积的有理线性组合。 这是Dil(2015)\cite{AD2015}和 Mez$\ddot{o}$(2010)\cite{M2010}结果的扩展。 考虑了一些有趣的新的结论和示例。
摘要: The generalized hyperharmonic numbers $h_n^{(m)}(k)$ are defined by means of the multiple harmonic numbers. We show that the hyperharmonic numbers $h_n^{(m)}(k)$ satisfy certain recurrence relation which allow us to write them in terms of classical harmonic numbers. Moreover, we prove that the Euler-type sums with hyperharmonic numbers: \[S\left( {k,m;p} \right): = \sum\limits_{n = 1}^\infty {\frac{{h_n^{\left( m \right)}\left( k \right)}}{{{n^p}}}} \;\;\left(p\geq m+1,\ {k = 1,2,3} \right)\] can be expressed as a rational linear combination of products of Riemann zeta values and harmonic numbers. This is an extension of the results of Dil (2015) \cite{AD2015} and Mez$\ddot{o}$ (2010) \cite{M2010}. Some interesting new consequences and illustrative examples are considered.
主题: 数论 (math.NT)
引用方式: arXiv:1701.00391 [math.NT]
  (或者 arXiv:1701.00391v2 [math.NT] 对于此版本)
  https://doi.org/10.48550/arXiv.1701.00391
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Ce Xu [查看电子邮件]
[v1] 星期一, 2017 年 1 月 2 日 14:03:18 UTC (10 KB)
[v2] 星期五, 2018 年 1 月 19 日 01:24:22 UTC (10 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • TeX 源代码
  • 其他格式
查看许可
当前浏览上下文:
math.NT
< 上一篇   |   下一篇 >
新的 | 最近的 | 2017-01
切换浏览方式为:
math

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号