Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > cs > arXiv:2309.00498

帮助 | 高级搜索

计算机科学 > 机器学习

arXiv:2309.00498 (cs)
[提交于 2023年9月1日 ]

标题: 深度学习方法在电力系统监测与优化中的应用

标题: Application of Deep Learning Methods in Monitoring and Optimization of Electric Power Systems

Authors:Ognjen Kundacina
摘要: 这篇博士论文全面考察了深度学习技术的运用,作为一种提升用于电力系统监测和优化的算法的方法。 本论文的主要贡献之一是将图神经网络应用于增强电力系统状态估计。 本论文的第二个关键方面是利用强化学习进行动态配电网络重构。 所提出的方法的有效性通过大量实验和仿真得到了证实。
摘要: This PhD thesis thoroughly examines the utilization of deep learning techniques as a means to advance the algorithms employed in the monitoring and optimization of electric power systems. The first major contribution of this thesis involves the application of graph neural networks to enhance power system state estimation. The second key aspect of this thesis focuses on utilizing reinforcement learning for dynamic distribution network reconfiguration. The effectiveness of the proposed methods is affirmed through extensive experimentation and simulations.
评论: 博士论文
主题: 机器学习 (cs.LG) ; 系统与控制 (eess.SY)
引用方式: arXiv:2309.00498 [cs.LG]
  (或者 arXiv:2309.00498v1 [cs.LG] 对于此版本)
  https://doi.org/10.48550/arXiv.2309.00498
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Ognjen Kundacina [查看电子邮件]
[v1] 星期五, 2023 年 9 月 1 日 14:42:27 UTC (12,408 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • TeX 源代码
  • 其他格式
许可图标 查看许可
当前浏览上下文:
cs.LG
< 上一篇   |   下一篇 >
新的 | 最近的 | 2023-09
切换浏览方式为:
cs
cs.SY
eess
eess.SY

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号