Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > math > arXiv:2408.11618

帮助 | 高级搜索

数学 > 几何拓扑

arXiv:2408.11618 (math)
[提交于 2024年8月21日 ]

标题: 有界结和链的带数

标题: Bounding the ribbon numbers of knots and links

Authors:Stefan Friedl, Filip Misev, Alexander Zupan
摘要: 绳结 $K \subset S^3$ 的绳结数 $r(K)$是任何以 $K$ 为边界的绳结盘中包含的最小绳结交叉数。 我们使用 $\det(K)$ 和 $\Delta_K(t)$ 得到了 $r(K)$ 的新下界,并证明集合 $\mathfrak{R}_r~=~\{\Delta_K(t)~:~r(K)~\leq~r\}$ 是有限且可计算的。 我们确定$\mathfrak{R}_2$和$\mathfrak{R}_3$,应用我们的结果计算具有 11 个或更少交叉点的所有丝带纽结的丝带数,有三个例外。 最后,我们找到了从其琼斯多项式导出的链环的丝带数的下界。
摘要: The ribbon number $r(K)$ of a ribbon knot $K \subset S^3$ is the minimal number of ribbon intersections contained in any ribbon disk bounded by $K$. We find new lower bounds for $r(K)$ using $\det(K)$ and $\Delta_K(t)$, and we prove that the set $\mathfrak{R}_r~=~\{\Delta_K(t)~:~r(K)~\leq~r\}$ is finite and computable. We determine $\mathfrak{R}_2$ and $\mathfrak{R}_3$, applying our results to compute the ribbon numbers for all ribbon knots with 11 or fewer crossings, with three exceptions. Finally, we find lower bounds for ribbon numbers of links derived from their Jones polynomials.
评论: 29页,19图,2表,欢迎提出意见!
主题: 几何拓扑 (math.GT)
MSC 类: 57K10
引用方式: arXiv:2408.11618 [math.GT]
  (或者 arXiv:2408.11618v1 [math.GT] 对于此版本)
  https://doi.org/10.48550/arXiv.2408.11618
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Alexander Zupan [查看电子邮件]
[v1] 星期三, 2024 年 8 月 21 日 13:44:55 UTC (225 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • HTML(实验性)
  • TeX 源代码
查看许可
当前浏览上下文:
math.GT
< 上一篇   |   下一篇 >
新的 | 最近的 | 2024-08
切换浏览方式为:
math

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号