凝聚态物理 > 无序系统与神经网络
[提交于 2025年7月30日
]
标题: 向量霍普菲尔德神经网络的非晶态固体模型
标题: Amorphous Solid Model of Vectorial Hopfield Neural Networks
摘要: We present a vectorial extension of the Hopfield associative memory model inspired by the theory of amorphous solids, where binary neural states are replaced by unit vectors $\mathbf{s}_i \in \mathbb{R}^3$ on the sphere $S^2$. The generalized Hebbian learning rule creates a block-structured weight matrix through outer products of stored pattern vectors, analogous to the Hessian matrix structure in amorphous solids. We demonstrate that this model exhibits quantifiable structural properties characteristic of disordered materials: energy landscapes with deep minima for stored patterns versus random configurations (energy gaps $\sim 7$ units), strongly anisotropic correlations encoded in the weight matrix (anisotropy ratios $\sim 10^2$), and order-disorder transitions controlled by the pattern density $\gamma = P/(N \cdot d)$. The enhanced memory capacity ($\gamma_c \approx 0.55$ for a fully-connected network) compared to binary networks ($\gamma_c \approx 0.138$) and the emergence of orientational correlations establish connections between associative memory mechanisms and amorphous solid physics, particularly in systems with continuous orientational degrees of freedom. 我们还揭示了记忆容量与配位数$Z$的标度关系:从三维弹性网络的等价点$Z_c =6$得到的$\gamma_c \sim (Z-6)$,这与三维中心力弹簧网络中剪切模量$G \sim (Z-6)$的标度密切相关。
当前浏览上下文:
cond-mat.dis-nn
切换浏览方式为:
文献和引用工具
与本文相关的代码,数据和媒体
alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)
演示
推荐器和搜索工具
arXivLabs:与社区合作伙伴的实验项目
arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。
与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。
有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.