Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > math > arXiv:2508.04863

帮助 | 高级搜索

数学 > 偏微分方程分析

arXiv:2508.04863 (math)
[提交于 2025年8月6日 ]

标题: 二维准静态弹性接触问题中从连续解到跳跃解的转变:制动噪音起始背后的数学原理

标题: Transition from Continuous to Jumping Solutions in 2D Quasi-static Elastic Contact Problems with Coulomb Friction: the Mathematics Underlying the Onset of Brake Squeal

Authors:Patrick Ballard, Flaviana Iurlano
摘要: 我们在一个非常一般的设定中表述了具有库仑摩擦的准静态弹性接触问题,其中载荷和解在时间上可能有跳跃。 利用我们最近论文[4]中的思想,我们给出了摩擦系数大小的一个最优条件,在该条件下,我们证明了在最一般的二维问题情况下,对于任意绝对连续的载荷,存在一个绝对连续的解。 我们提供了例子说明,当该条件被违反时,即使载荷随时间绝对连续变化,解也可能出现自发的时间跳跃。 我们认为,准静态问题中解的这些自发时间跳跃揭示了过程从准静态性质向动态性质的转变,被解释为干摩擦弹性动力接触问题中摩擦诱发振动开始的数学特征。
摘要: We formulate the quasi-static elastic contact problem with Coulomb friction in a very general setting, with possible jumps in time for both the load and the solution. Exploiting ideas originating in our recent paper [4], we exhibit an optimal condition on the magnitude of the friction coefficient under which we prove the existence of an absolutely continuous solution for arbitrary absolutely continuous loads in the case of the most general 2D problem. We provide examples showing that, when the condition is violated, spontaneous jumps in time of the solution may occur, even when the load varies absolutely continuously in time. We argue that these spontaneous jumps in time of the solution in the quasi-static problem reveal a transition of the process from a quasi-static nature to a dynamic nature, interpreted as the mathematical signature of the onset of friction-induced vibrations in the elastodynamic contact problem with dry friction.
主题: 偏微分方程分析 (math.AP)
引用方式: arXiv:2508.04863 [math.AP]
  (或者 arXiv:2508.04863v1 [math.AP] 对于此版本)
  https://doi.org/10.48550/arXiv.2508.04863
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Flaviana Iurlano [查看电子邮件]
[v1] 星期三, 2025 年 8 月 6 日 20:21:16 UTC (38 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • HTML(实验性)
  • TeX 源代码
查看许可
当前浏览上下文:
math.AP
< 上一篇   |   下一篇 >
新的 | 最近的 | 2025-08
切换浏览方式为:
math

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号