Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > cs > arXiv:2510.16097

帮助 | 高级搜索

计算机科学 > 机器学习

arXiv:2510.16097 (cs)
[提交于 2025年10月17日 ]

标题: 使用人工智能缩小行动选择范围可提高人类的序列决策能力

标题: Narrowing Action Choices with AI Improves Human Sequential Decisions

Authors:Eleni Straitouri, Stratis Tsirtsis, Ander Artola Velasco, Manuel Gomez-Rodriguez
摘要: Recent work has shown that, in classification tasks, it is possible to design decision support systems that do not require human experts to understand when to cede agency to a classifier or when to exercise their own agency to achieve complementarity$\unicode{x2014}$experts using these systems make more accurate predictions than those made by the experts or the classifier alone. The key principle underpinning these systems reduces to adaptively controlling the level of human agency, by design. Can we use the same principle to achieve complementarity in sequential decision making tasks? In this paper, we answer this question affirmatively. We develop a decision support system that uses a pre-trained AI agent to narrow down the set of actions a human can take to a subset, and then asks the human to take an action from this action set. Along the way, we also introduce a bandit algorithm that leverages the smoothness properties of the action sets provided by our system to efficiently optimize the level of human agency. To evaluate our decision support system, we conduct a large-scale human subject study ($n = 1{,}600$) where participants play a wildfire mitigation game. We find that participants who play the game supported by our system outperform those who play on their own by $\sim$$30$ % and the AI agent used by our system by $>$$2$ %, even though the AI agent largely outperforms participants playing without support. We have made available the data gathered in our human subject study as well as an open source implementation of our system at https://github.com/Networks-Learning/narrowing-action-choices .
摘要: Recent work has shown that, in classification tasks, it is possible to design decision support systems that do not require human experts to understand when to cede agency to a classifier or when to exercise their own agency to achieve complementarity$\unicode{x2014}$experts using these systems make more accurate predictions than those made by the experts or the classifier alone. The key principle underpinning these systems reduces to adaptively controlling the level of human agency, by design. Can we use the same principle to achieve complementarity in sequential decision making tasks? In this paper, we answer this question affirmatively. We develop a decision support system that uses a pre-trained AI agent to narrow down the set of actions a human can take to a subset, and then asks the human to take an action from this action set. Along the way, we also introduce a bandit algorithm that leverages the smoothness properties of the action sets provided by our system to efficiently optimize the level of human agency. To evaluate our decision support system, we conduct a large-scale human subject study ($n = 1{,}600$) where participants play a wildfire mitigation game. We find that participants who play the game supported by our system outperform those who play on their own by $\sim$$30$% and the AI agent used by our system by $>$$2$%, even though the AI agent largely outperforms participants playing without support. We have made available the data gathered in our human subject study as well as an open source implementation of our system at https://github.com/Networks-Learning/narrowing-action-choices .
评论: 被美国国家科学基金会人工智能社会决策研究所2025年人机互补决策研讨会接收
主题: 机器学习 (cs.LG) ; 人工智能 (cs.AI); 计算机与社会 (cs.CY); 人机交互 (cs.HC); 机器学习 (stat.ML)
引用方式: arXiv:2510.16097 [cs.LG]
  (或者 arXiv:2510.16097v1 [cs.LG] 对于此版本)
  https://doi.org/10.48550/arXiv.2510.16097
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Eleni Straitouri [查看电子邮件]
[v1] 星期五, 2025 年 10 月 17 日 18:00:00 UTC (3,088 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • HTML(实验性)
  • TeX 源代码
许可图标 查看许可
当前浏览上下文:
cs.LG
< 上一篇   |   下一篇 >
新的 | 最近的 | 2025-10
切换浏览方式为:
cs
cs.AI
cs.CY
cs.HC
stat
stat.ML

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号