Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > math.QA

帮助 | 高级搜索

量子代数

  • 新提交
  • 交叉列表
  • 替换

查看 最近的 文章

显示 2025年08月08日, 星期五 新的列表

总共 8 条目
显示最多 2000 每页条目: 较少 | 更多 | 所有

新提交 (展示 1 之 1 条目 )

[1] arXiv:2508.04922 [中文pdf, pdf, html, 其他]
标题: 多项式恒等式和有理量子球面的Azumaya概形
标题: Polynomial identities and Azumaya loci for rational quantum spheres
Alexandru Chirvasitu
评论: 20页 + 参考文献
主题: 量子代数 (math.QA) ; 泛函分析 (math.FA) ; 算子代数 (math.OA) ; 环与代数 (math.RA)

我们证明了关于非交换 Natsume-Olsen 球体$\mathbb{S}^{2n-1}_{\theta}$沿反对称矩阵$\theta\in \mathbb{R}$变形的一些结构和同构结果。 这些包括(a)两个形式为$\mathbb{S}^{3}_{\theta}\otimes M_n$的$C^*$代数在显然的情况下恰好是同构的这一事实;(b)$m$和$n$可以从$C(\mathbb{S}^{2m-1}_{\theta})\otimes M_n$的同构类中恢复这一事实;(c)对于有理数$\theta$,$C(\mathbb{S}^{2m-1}_{\theta})$的PI性质、PI次数和Azumaya局部性,以及它们的中心作为$\mathbb{S}^{2n-1}$的分支覆盖的函数代数的实现;(d)对于有理数$\theta$再次,$C(\mathbb{S}^{2m-1}_{\theta})$在其中心上的拓扑有限生成性,而代数有限生成性等价于经典性(等价地,Azumaya)。

We prove a number of structure and isomorphism results concerning the non-commutative Natsume-Olsen spheres $\mathbb{S}^{2n-1}_{\theta}$ deformed along a skew-symmetric matrix $\theta\in \mathbb{R}$. These include (a) the fact that two $C^*$-algebras of the form $\mathbb{S}^{3}_{\theta}\otimes M_n$ are isomorphic precisely in the obvious cases; (b) the fact that $m$ and $n$ are recoverable from the isomorphism class of $C(\mathbb{S}^{2m-1}_{\theta})\otimes M_n$; (c) the PI character, PI degree and Azumaya loci of $C(\mathbb{S}^{2m-1}_{\theta})$ for rational $\theta$, along with a realization of their centers as (function algebras of) branched cover of $\mathbb{S}^{2n-1}$ and (d) for rational $\theta$ again, the topological finite generation of $C(\mathbb{S}^{2m-1}_{\theta})$ over their centers, with algebraic finite generation equivalent to being classical (equivalently, Azumaya).

交叉提交 (展示 4 之 4 条目 )

[2] arXiv:2507.07170 (交叉列表自 hep-th) [中文pdf, pdf, html, 其他]
标题: 全纯Bootstrap用于RCFT:拟字符的符号和界限
标题: Holomorphic bootstrap for RCFT: signs and bounds for quasi-characters
Arpit Das, Sunil Mukhi
评论: 44页,1图,2表。v2:新增1个附录,进行了小的修改并更正了拼写错误,主要结果保持不变
主题: 高能物理 - 理论 (hep-th) ; 数学物理 (math-ph)

拟字符是简单模微分方程的解,它们构成了所有可能描述有理CFT的可接受字符空间的显式基。它们在arXiv:1810.09472 [hep-th]中对秩-$2$进行了分类,其中猜想它们的$q$系列系数具有交替符号,并在阶数$\frac{c}{12}$时稳定到固定符号,有时还会表现出更奇特的行为——其中$c$是中心荷。在这里,我们证明了这些猜想,并估计了在稳定点附近的系数增长情况。我们还解释了符号在从拟字符构造可接受字符中的作用。

Quasi-characters are solutions of simple modular differential equations that form an explicit basis for the space of all admissible characters that can potentially describe rational CFT. They were classified for rank-$2$ in arXiv:1810.09472 [hep-th], where it was conjectured that their $q$-series has coefficients of alternating sign that stabilise to a fixed sign at order $\frac{c}{12}$ and sometimes undergo more exotic behaviour -- where $c$ is the central charge. Here we prove some of these conjectures and estimate the growth of coefficients near the stabilisation point. We also explain what role the signs play in the construction of admissible characters from quasi-characters.

[3] arXiv:2508.05120 (交叉列表自 math.GT) [中文pdf, pdf, 其他]
标题: 从$\mathrm {U}_{q}\mathfrak{sl}(2;\mathbb R)$的模双代数的图雅尔-维罗不变量
标题: Turaev-Viro invariant from the modular double of $\mathrm {U}_{q}\mathfrak{sl}(2;\mathbb R)$
Tianyue Liu, Shuang Ming, Xin Sun, Baojun Wu, Tian Yang
评论: 108页,26图。arXiv管理员注:与其它作者的arXiv:2308.06643、arXiv:2105.08805存在文字重叠
主题: 几何拓扑 (math.GT) ; 数学物理 (math-ph) ; 概率 (math.PR) ; 量子代数 (math.QA)

We define a family of Turaev-Viro type invariants of hyperbolic $3$-manifolds with totally geodesic boundary from the $6j$-symbols of the modular double of $\mathrm U_{q}\mathfrak{sl}(2;\mathbb R)$, and prove that these invariants decay exponentially with the rate the hyperbolic volume of the manifolds and with the $1$-loop term the adjoint twisted Reidemeister torsion of the double of the manifolds.

We define a family of Turaev-Viro type invariants of hyperbolic $3$-manifolds with totally geodesic boundary from the $6j$-symbols of the modular double of $\mathrm U_{q}\mathfrak{sl}(2;\mathbb R)$, and prove that these invariants decay exponentially with the rate the hyperbolic volume of the manifolds and with the $1$-loop term the adjoint twisted Reidemeister torsion of the double of the manifolds.

[4] arXiv:2508.05191 (交叉列表自 hep-th) [中文pdf, pdf, 其他]
标题: Reshetikhin-Turaev形式主义的算子提升到Khovanov-Rozansky TQFTs
标题: Operator lift of Reshetikhin-Turaev formalism to Khovanov-Rozansky TQFTs
Dmitry Galakhov, Elena Lanina, Alexei Morozov
评论: 35页,3图
主题: 高能物理 - 理论 (hep-th) ; 数学物理 (math-ph) ; 一般拓扑 (math.GN) ; 量子代数 (math.QA)

拓扑量子场论(TQFT)是一种强大的工具,用于描述同调,这通常涉及复形和各种映射/态射,使得一种仅对单一类型的映射求和的泛函积分方法似乎存在问题。 在TQFT中,这个问题是通过利用BRST算子丰富的零模来解决的,这些零模足以描述复形。 我们解释了这种方法对于重要的Khovanov-Rozansky(KR)上同调类看起来是什么样子,这些上同调对3d Chern-Simons理论中的可观测量(Wilson线或纽结多项式)进行分类。 我们开发了一种与所有链图相关的奇微分算子的构造,包括带有开放端的辫子。 这些算子仅在没有外部腿的图中才是幂零的,但对于开放的辫子,也可以发展出一种分解形式,该形式保持Reidemeister/拓扑不变性——问题的对称性。 这种方法似乎比传统的同调代数语言更“物理”,并且应该在超越Chern-Simons理论的各种问题中有许多应用。 我们也希望这种语言将提供高效的算法,并最终允许计算机化KR上同调的计算——对于闭合图和开放辫子。

Topological quantum field theory (TQFT) is a powerful tool to describe homologies, which normally involve complexes and a variety of maps/morphisms, what makes a functional integration approach with a sum over a single kind of maps seemingly problematic. In TQFT this problem is overcame by exploiting the rich set of zero modes of BRST operators, which appear sufficient to describe complexes. We explain what this approach looks like for the important class of Khovanov-Rozansky (KR) cohomologies, which categorify the observables (Wilson lines or knot polynomials) in 3d Chern-Simons theory. We develop a construction of odd differential operators, associated with all link diagrams, including tangles with open ends. These operators become nilpotent only for diagram with no external legs, but even for open tangles one can develop a factorization formalism, which preserve Reidemeister/topological invariance -- the symmetry of the problem. This technique seems much more ``physical'' than conventional language of homological algebra and should have many applications to various problems beyond Chern-Simons theory. We also hope that this language will provide efficient algorithms, and finally allow to computerize the calculation of KR cohomologies -- for closed diagrams and for open tangles.

[5] arXiv:2508.05605 (交叉列表自 math.GT) [中文pdf, pdf, 其他]
标题: 环形SL(2)和SL(3)网络代数
标题: Annular SL(2) and SL(3) web algebras
Rostislav Akhmechet, Mikhail Khovanov, Melissa Zhang
评论: 54页,许多图表
主题: 几何拓扑 (math.GT) ; 量子代数 (math.QA)

我们使用由前两位作者引入的环形泡沫TQFT来定义环中的等变$SL(2)$和$SL(3)$网络代数。 对于加厚环中的辫子图,我们分配一个这些代数上的双模复形,其链同伦类型是辫子的不变量。 建立了代数和双模的一些性质。 论文的一个关键技术部分提供了非椭圆环形$SL(3)$网络与$SL(3)$权格点中闭合路径之间的双射对应关系。 这推广了平面情况下的类似双射。

We use annular foam TQFTs introduced by the first two authors to define equivariant $SL(2)$ and $SL(3)$ web algebras in the annulus. To a diagram of a tangle in the thickened annulus we assign a complex of bimodules over these algebras whose chain homotopy type is an invariant of the tangle. Several properties of algebras and bimodules are established. An essential technical part of the paper provides a bijective correspondence between non-elliptic annular $SL(3)$ webs and closed paths in the $SL(3)$ weight lattice. This generalizes an analogous bijection in the planar setting.

替换提交 (展示 3 之 3 条目 )

[6] arXiv:2503.05307 (替换) [中文pdf, pdf, html, 其他]
标题: 衍生形变函子,Koszul对偶性,Maurer-Cartan空间
标题: Derived deformation functors, Koszul duality, and Maurer-Cartan spaces
J.P.Pridham
评论: 16页,包含一些新内容的综述;v2最终版本,即将发表在《皇家学会哲学学报A辑》上
主题: 代数几何 (math.AG) ; 代数拓扑 (math.AT) ; 量子代数 (math.QA)

我们总结了比较链,表明Hinich的导出Maurer-Cartan函子在微分分次李代数和导出Schlessinger函子之间建立了等价关系,这些函子作用于阿廷微分分次交换代数上。 我们包含了一些激发变形问题以及更一般的Koszul对偶操作符的类比。

We summarise the chain of comparisons showing Hinich's derived Maurer-Cartan functor gives an equivalence between differential graded Lie algebras and derived Schlessinger functors on Artinian differential graded-commutative algebras. We include some motivating deformation problems and analogues for more general Koszul dual pairs of operads.

[7] arXiv:2503.20691 (替换) [中文pdf, pdf, html, 其他]
标题: 量子群在双标度SYK中的边缘态起源
标题: Quantum group origins of edge states in double-scaled SYK
Andreas Belaey, Thomas G. Mertens, Thomas Tappeiner
评论: v2:47页+附录,更正了拼写错误
主题: 高能物理 - 理论 (hep-th) ; 数学物理 (math-ph) ; 量子代数 (math.QA) ; 表示理论 (math.RT)

双尺度SYK(DSSYK)已知具有底层量子群理论描述。 我们精确地指出了量子群结构,改进了文献中的早期工作。 这使我们能够利用该框架进行体引力应用。 我们从表示的底层不可约性解释了DSSYK中的体离散化。 我们通过量子群的特征插入推导了喇叭和膜振幅,简化了早期计算。 最重要的是,我们使用位于体纠缠表面上的完整边缘自由度集,在量子群描述中对DSSYK对偶的体希尔伯特空间进行分解。 在相同的量子群理论框架下,提供了对$\mathcal{N}=1$DSSYK的类似处理。

Double-scaled SYK (DSSYK) is known to have an underlying quantum group theoretical description. We precisely pinpoint the quantum group structure, improving upon earlier work in the literature. This allows us to utilize this framework for bulk gravitational applications. We explain bulk discretization in DSSYK from the underlying irreducibility of the representations. We derive trumpet and brane amplitudes using character insertions of the quantum group, simplifying earlier calculations. Most importantly, we factorize the bulk Hilbert space dual to DSSYK in the quantum group description using a complete set of edge degrees of freedom living at a bulk entangling surface. An analogous treatment for $\mathcal{N}=1$ DSSYK is provided in the same quantum group theoretical framework.

[8] arXiv:2505.09520 (替换) [中文pdf, pdf, html, 其他]
标题: 洗牌乘积,退化仿射Hecke代数和量子Toda格子
标题: Shuffle Products, Degenerate Affine Hecke Algebras, and Quantum Toda Lattice
Artem Kalmykov
评论: 48页
主题: 表示理论 (math.RT) ; 量子代数 (math.QA)

我们从纯粹代数的角度重新审视了$\mathrm{GL}_N$的量子 Toda 格点以及$\mathfrak{sl}_2$的截断位移杨代数及其相关构造,绕过了仿射格拉斯曼流形的同调拓扑媒介。 例如,我们通过米乌拉变换的有限类比,将 Gerasimov-Kharchev-Lebedev-Oblezin 同态解释为差分算子代数中的映射。 这种代数识别是通过将退化的仿射海克代数与有理 Feigin-Odesskii 混合乘积的最简单例子联系起来而推导得出的。 作为额外收获,我们通过 Kostant-Whittaker 约化的镜像版本得到了后者的一个表示。

We revisit an identification of the quantum Toda lattice for $\mathrm{GL}_N$ and the truncated shifted Yangian of $\mathfrak{sl}_2$, as well as related constructions, from a purely algebraic point of view, bypassing the topological medium of the homology of the affine Grassmannian. For instance, we interpret the Gerasimov-Kharchev-Lebedev-Oblezin homomorphism into the algebra of difference operators via a finite analog of the Miura transform. This algebraic identification is deduced by relating degenerate affine Hecke algebras to the simplest example of a rational Feigin-Odesskii shuffle product. As a bonus, we obtain a presentation of the latter via a mirabolic version of the Kostant-Whittaker reduction.

总共 8 条目
显示最多 2000 每页条目: 较少 | 更多 | 所有
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号